Log in

Breast cancer therapy: from the perspective of glucose metabolism and glycosylation

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Breast cancer is a leading cause of mortality and the most prevalent form of malignant tumor among women worldwide. Breast cancer cells exhibit an elevated glycolysis and altered glucose metabolism. Moreover, these cells display abnormal glycosylation patterns, influencing invasion, proliferation, metastasis, and drug resistance. Consequently, targeting glycolysis and mitigating abnormal glycosylation represent key therapeutic strategies for breast cancer. This review underscores the importance of protein glycosylation and glucose metabolism alterations in breast cancer. The current research efforts in develo** effective interventions targeting glycolysis and glycosylation are further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Sung H, Ferlay J, Siegel RL et al (2020) Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  Google Scholar 

  2. Chhikara BS, Parang K (2023) Global Cancer statistics 2022: the trends Projection Analysis. Chem Biol Lett 10:451

    Google Scholar 

  3. Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132

    Article  PubMed  Google Scholar 

  4. Polyak K (2007) Breast cancer: origins and evolution. J Clin Invest 117:3155–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kleibl Z, Kristensen VN (2016) Women at high risk of breast cancer: molecular characteristics, clinical presentation and management. Breast 20:136–144

    Article  Google Scholar 

  6. Scott DA, Drake RR (2019) Glycosylation and its implications in breast cancer. Expert Rev 16:665–680

    Article  CAS  Google Scholar 

  7. Ibrahim E, Al-Gahmi AM, Zeenelin AA et al (2009) Luminal A breast cancer subtypes: a matched case-control study using estrogen receptor, progesterone receptor, and HER-2 as surrogate markers. Med Oncol 26:372–378

    Article  CAS  PubMed  Google Scholar 

  8. Apostolou P, Fostira F (2013) Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int 2013: 747318

  9. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790

    Article  CAS  PubMed  Google Scholar 

  10. Fragomeni SM, Sciallis A, Jeruss JS (2018) Molecular subtypes and local-regional control of breast cancer. Surg Oncol Clin N Am 27:95–120

    Article  PubMed  PubMed Central  Google Scholar 

  11. Szymiczek A, Lone A, Akbari MR (2021) Molecular intrinsic versus clinical subty** in breast cancer: a comprehensive review. Clin Genet 99:613–637

    Article  CAS  PubMed  Google Scholar 

  12. Seyfried TN, Arismendi-Morillo G, Mukherjee P, Chinopoulos C (2020) On the origin of ATP synthesis in cancer. iScience 23:101761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reily C, Stewart TJ, Renfrow MB, Novak J (2019) Glycosylation in health and disease. Nat Rev Nephrol 15:346–366

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378

    Article  CAS  PubMed  Google Scholar 

  15. Slawson C, Copeland RJ, Hart GW (2010) O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci 35:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16:635–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Z, Zhang H (2016) Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 73:377–392

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, **ang J (2019) Remodeling the Microenvironment before occurrence and metastasis of Cancer. Int J Biol Sci 15:105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martínez-Reyes I, Chanel NS (2021) Cancer metabolism: looking forward. Nat Rev Cancer 21:669–680

    Article  PubMed  Google Scholar 

  20. Cairns RA, HARRIS IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  CAS  PubMed  Google Scholar 

  21. Dias AS, Almeida CR, Helguero LA, Duarte IF (2019) Metabolic crosstalk in the breast cancer microenvironment. Eur J Cancer 121:154–171

    Article  CAS  PubMed  Google Scholar 

  22. Gill KS, Fernandes P, O’Donovan TR et al (2016) Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Biochim Biophys Acta 1866:87–105

    CAS  PubMed  Google Scholar 

  23. Warburg O (1956) On the origin of cancer cells. Science 3191:309–314

    Article  Google Scholar 

  24. Wei J, Huang K, Chen Z et al (2020) Characterization of Glycolysis-Associated molecules in the Tumor Microenvironment revealed by Pan-cancer tissues and Lung Cancer single cell data. Cancers (Basel) 12:1788

    Article  CAS  PubMed  Google Scholar 

  25. Warburg O (1928) The chemical constitution of respiratory ferment. Science 68:437–443

    Article  CAS  PubMed  Google Scholar 

  26. Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    Article  CAS  PubMed  Google Scholar 

  27. Ganapathy-Kanniappan S, Geschwind JF (2013) Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 12:152

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  29. Bononi G, Masoni S, Di Bussolo V et al (2022) Historical perspective of tumor glycolysis: a century with Otto Warburg. Semin Cancer Biol 86:325–333

    Article  CAS  PubMed  Google Scholar 

  30. Ramos-Martinez JI (2017) The regulation of the pentose phosphate pathway:remember Krebs. Arch Biochem Biophys 614:50–52

    Article  CAS  PubMed  Google Scholar 

  31. Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39:347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shin E, Koo JS (2021) Glucose metabolism and glucose transporters in breast Cancer. Front Cell Dev Biol 9:728759

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wellen KE, Lu C, Mancuso A et al (2010) The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24:2784–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91(2):733–794

    Article  CAS  PubMed  Google Scholar 

  35. Tsunokake S, Iwabuchi E, Miki Y et al (2023) SGLT1 as an adverse prognostic factor in invasive ductal carcinoma of the breast. Breast Cancer Res Treat 201:499–513

    Article  CAS  PubMed  Google Scholar 

  36. Liu H, Ertay A, Peng P et al (2019) SGLT1 is required for the survival of triple-negative breast cancer cells via potentiation of EGFR activity. Mol Oncol 13:1874–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang J, Ji H, Niu X et al (2020) Sodium-Dependent Glucose Transporter 1 (SGLT1) Stabled by HER2 Promotes Breast Cancer Cell Proliferation by Activation of the PI3K/Akt/mTOR Signaling Pathway in HER2 + Breast Cancer. Dis Markers 2020: 6103542

  38. Shibazaki T, Tomae M, Ishikawa-Takemura Y et al (2012) KGA-2727, a novel selective inhibitor of a high-affinity sodium glucose cotransporter (SGLT1), exhibits antidiabetic efficacy in rodent models. J Pharmacol Exp Ther 342:288–296

    Article  CAS  PubMed  Google Scholar 

  39. Fukudo S, Endo Y, Hongo M et al (2018) Safety and efficacy of the sodium-glucose cotransporter 1 inhibitor mizagliflozin for functional constipation: a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Gastroenterol Hepatol 3:603–613

    Article  PubMed  Google Scholar 

  40. Zhou J, Zhu J, Yu SJ et al (2020) Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother 132:110821

    Article  CAS  PubMed  Google Scholar 

  41. Komatsu S, Nomiyama T, Numata T et al (2020) SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation. Endocr J 67:99–106

    Article  CAS  PubMed  Google Scholar 

  42. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34:121–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Z, Zhang L, Zhang D et al (2015) Glycolysis inhibitor 2-deoxy-dglucose suppresses carcinogen-induced rat hepatocarcinogenesis by restricting cancer cell metabolism. Mol Med Rep 11:1917–1924

    Article  CAS  PubMed  Google Scholar 

  44. Kuntz S, Mazerbourg S, Boisbrun M et al (2014) Energy restriction mimetic agents to target cancer cells: comparison between 2-deoxyglucose and thiazolidinediones. Biochem Pharmacol 92:102–111

    Article  CAS  PubMed  Google Scholar 

  45. Tagg SL, Foster PA, Leese MP et al (2008) 2-Methoxyoestradiol-3,17-O,O-bis-sulphamate and 2-deoxy-D-glucose in combination: a potential treatment for breast and prostate cancer. Br J Cancer 99:1842–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andrade-Vieira R, Goguen D, Bentley HA et al (2014) Pre-clinical study of drug combinations that reduce breast cancer burden due to aberrant mTOR and metabolism promoted by LKB1 loss. Oncotarget 5:12738–12752

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vijayaraghavan R, Kumar D, Dube SN et al (2006) Acute toxicity and cardio-respiratory effects of 2-deoxy-D-glucose: a promising radio sensitiser. Biomed Environ Sci 19:96–103

    CAS  PubMed  Google Scholar 

  48. Zhu XX, Ding YH, Wu Y et al (2016) Silibinin: a potential old drug for cancer therapy. Expert Rev Clin Pharmacol 9(10):1323–1330

    Article  CAS  PubMed  Google Scholar 

  49. Pirouzpanah MB, Sabzichi M, Pirouzpanah S et al (2015) Silibilin-induces apoptosis in breast cancer cells by modulating p53, p21, Bak and Bcl-XL pathways. Asian Pac J Cancer Prev 16:2087–2092

    Article  PubMed  Google Scholar 

  50. Flaig TW, Gustafson DL, Su LJ et al (2007) A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest New Drugs 25:139–146

    Article  CAS  PubMed  Google Scholar 

  51. Jia L, Huang S, Yin X et al (2018) Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci 208:123–130

    Article  CAS  PubMed  Google Scholar 

  52. Kasiri N, Rahmati M, Ahmadi L et al (2020) Therapeutic potential of quercetin on human breast cancer in different dimensions. Inflammopharmacology 28:39–62

    Article  PubMed  Google Scholar 

  53. Siebeneicher H, Cleve A, Rehwinkel H et al (2016) Identification and optimization of the First highly selective GLUT1 inhibitor BAY-876. ChemMedChem 11:2261–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu Q, Ba-Alawi W, Deblois G et al (2020) GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer. Nat Commun 11:4205

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen M, Gowd V, Wang M et al (2021) The apple dihydrochalcone phloretin suppresses growth and improves chemosensitivity of breast cancer cells via inhibition of cytoprotective autophagy. Food Funct 12:177–190

    Article  CAS  PubMed  Google Scholar 

  56. Azevedo C, Correia-Branco A, Araújo JR, Guimarães JT, Keating E, Martel F et al (2015) The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr Cancer 67: 504–513

    Article  CAS  PubMed  Google Scholar 

  57. Toschi E, Sgadari C, Malavasi L et al (2011) Human immunodeficiency virus protease inhibitors reduce the growth of human tumors via a proteasome-independent block of angiogenesis and matrix metalloproteinases. Int J Cancer 128:82–93

    Article  CAS  PubMed  Google Scholar 

  58. Fumarola C, Caffarra C, la Monica S et al (2013) Effects of Sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Breast Cancer Res Treat 141:67–78

    Article  CAS  PubMed  Google Scholar 

  59. **ntaropoulou C, Ward C, Wise A et al (2015) A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget 6:25677–25695

    Article  PubMed  PubMed Central  Google Scholar 

  60. Qian Y, Wang X, Liu Y et al (2014) Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells. Cancer Lett 351:242–251

    Article  CAS  PubMed  Google Scholar 

  61. De A, Wadhwani A, Sauraj et al (2023) WZB117 decorated metformin-carboxymethyl Chitosan nanoparticles for targeting breast Cancer metabolism. Polym (Basel) 15:976

    Article  CAS  Google Scholar 

  62. Chen Q, Meng YQ, Xu XF, Gu J (2017) Blockade of GLUT1 by WZB117 resensitizes breast cancer cells to adriamycin. Anticancer Drugs 28:880–887

    Article  CAS  PubMed  Google Scholar 

  63. Dwarakanath B, Jain V (2009) Targeting glucose metabolism with 2-deoxy-D-glucose for improving cancer therapy. Future Oncol 5:581–585

    Article  CAS  PubMed  Google Scholar 

  64. Di Cosimo S, Ferretti G, Papaldo P et al (2003) Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today 39:157

    Article  Google Scholar 

  65. Price GS, Page RL, Riviere JE et al (1996) Pharmacokinetics and toxicity of oral and intravenous lonidamine in dogs. Cancer Chemother Pharmacol 38:129–135

    Article  CAS  PubMed  Google Scholar 

  66. Liu Z, Zhang YY, Zhang QW et al (2014) 3-Bromopyruvate induces apoptosis in breast cancer cells by downregulating Mcl-1 through the PI3K/Akt signaling pathway. Anticancer Drugs 25:447–455

    Article  CAS  PubMed  Google Scholar 

  67. Tao L, Wei L, Liu Y et al (2017) Gen-27, a newly synthesized flavonoid, inhibits glycolysis and induces cell apoptosis via suppression of hexokinase II in human breast cancer cells. Biochem Pharmacol 125:12–25

    Article  CAS  PubMed  Google Scholar 

  68. Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang ZH, Peng WB, Zhang P et al (2021) Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine 73:103627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gadelha ICN, Fonseca NBS, Oloris SCS et al (2014) Gossypol toxicity from cottonseed products. Sci World J 2014: 231635

  71. Kenar JA (2006) Reaction chemistry of gossypol and its derivatives. J Am Oil Chem Soc 83:269–302

    Article  CAS  Google Scholar 

  72. Gao P, Bauvy C, Souquère S et al (2010) The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. The Journal of biological chemistry. 2010, 285, 25570–25581

  73. Zhou M, Zhao Y, Ding Y et al (2010) Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer 9:33

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hong CS, Graham NA, Gu W et al (2016) MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep 14:1590–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pinheiro C, Albergaria A, Paredes J et al (2010) Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology 56:860–867

    Article  PubMed  Google Scholar 

  76. Benyahia Z, Blackman MCNM, Hamelin L et al (2021) In Vitro and in vivo characterization of MCT1 inhibitor AZD3965 confirms Preclinical Safety compatible with breast Cancer Treatment. Cancers 13:569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chang X, Obianwuna UE, Wang J et al (2023) Glycosylated proteins with abnormal glycosylation changes are potential biomarkers for early diagnosis of breast cancer. Int J Biol Macromol 236:123855

    Article  CAS  PubMed  Google Scholar 

  78. Neelamegham S, Mahal LK (2016) Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Curr Opin Struct Biol 40:145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Helenius A, Markus A (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  81. Cornelissen LA, Van Vliet SJ (2016) A bitter sweet symphony: immune responses to altered O-glycan epitopes in cancer. Biomolecules 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nardy AFFR, Freire-de-Lima L, Freire-de-Lima GG, Morrot A (2016) The sweet side of immune evasion: role of glycans in the mechanisms of cancer progression. Front Oncol 6:54

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li X, Wang X, Tan Z et al (2016) Role of glycans in cancer cells undergoing epithelial-mesenchymal transition. Front Oncol 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15:540–555

    Article  CAS  PubMed  Google Scholar 

  85. Varki A (2017) Biological roles of glycans. Glycobiology 27:3–49

    Article  CAS  PubMed  Google Scholar 

  86. Tan FY, Tang CM, Exley RM (2015) Sugar coating: bacterial protein glycosylation and host-microbe interactions. Trends Biochem Sci 40:342–350

    Article  CAS  PubMed  Google Scholar 

  87. Corfield AP, Berry M (2015) Glycan variation and evolution in the eukaryotes. Trends Biochem Sci 40:351–359

    Article  CAS  PubMed  Google Scholar 

  88. Duarte HO, Freitas D, Gomes C et al (2016) Mucin-type O-Glycosylation in gastric carcinogenesis. Biomolecules 6:33–42

    Article  PubMed  PubMed Central  Google Scholar 

  89. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds, vol 12. Glycobiology, pp 43R–56R

  90. Lee HS, Qi Y, Im W (2015) Effects of N-glycosylation on protein conformation and dynamics: protein data Bank analysis and molecular dynamics simulation study. Sci Rep 5:8926

    Article  PubMed  PubMed Central  Google Scholar 

  91. Solá RJ, Griebenow K (2010) Glycosylation of therapeutic proteins. BioDrugs 24:9–21

    Article  PubMed  PubMed Central  Google Scholar 

  92. Murakami M, Kiuchi T, Nishihara M et al (2016) Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity. Sci Adv 2:e1500678

    Article  PubMed  PubMed Central  Google Scholar 

  93. Minh Hien N, Izumi M, Sato H et al (2017) Chemical synthesis of glycoproteins with the specific installation of gradient-enriched 15 N-labeled amino acids for getting insights into glycoprotein behavior. Chem Eur J 23:6579–6585

    Article  PubMed  Google Scholar 

  94. Ressler VT, Raines RT (2019) Consequences of the endogenous N-glycosylation of human ribonuclease 1. Biochemistry 58:987–996

    Article  CAS  PubMed  Google Scholar 

  95. Itano N, Iwamoto S (2023) Dysregulation of hexosamine biosynthetic pathway wiring metabolic signaling circuits in cancer. Biochim Biophys Acta Gen Subj 1867:130250

    Article  CAS  PubMed  Google Scholar 

  96. Liu Y, Yu K, Zhang K et al (2023) O-GlcNAcylation promotes topoisomerase IIα catalytic activity in breast cancer chemoresistance. EMBO Rep 24(7), e56458

  97. Ma Z, Vosseller K (2014) Cancer metabolism and elevated O-GlcNAc in oncogenic signaling. J Biol Chem 289:34457–34465

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu Y, Yu K, Kong X et al (2023) FOXA1 O-GlcNAcylation-mediated transcriptional switch governs metastasis capacity in breast cancer. Sci Adv 9(33):eadg7112

    Article  PubMed  PubMed Central  Google Scholar 

  99. Barkovskaya A, Seip K, Hilmarsdottir B et al (2019) O-GlcNAc transferase inhibition differentially affects breast Cancer subtypes. Sci Rep 9:5670

    Article  PubMed  PubMed Central  Google Scholar 

  100. Inman JL, Robertson C, Mott JD, Bissell MJ (2015) Mammary gland development: cell fate specification. stem Cells Microenvironment Dev 142:1028–1042

    CAS  Google Scholar 

  101. Nath S, Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20:332–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bose M, Mukherjee P (2020) Microbe-MUC1 crosstalk in Cancer-Associated infections. Trends Mol Med 26:324–336

    Article  CAS  PubMed  Google Scholar 

  103. Carson DD (2008) The cytoplasmic tail of MUC1: a very busy place. Sci Signal 1:pe35

    Article  PubMed  Google Scholar 

  104. Chen W, Zhang Z, Zhang S et al (2021) MUC1: structure, function, and clinic application in epithelial cancers. Int J Mol Sci 22:12

    CAS  Google Scholar 

  105. Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209:139–151

    Article  CAS  PubMed  Google Scholar 

  106. Schwartz MA, Ginsberg MH (2002) Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4:E65–E68

    Article  CAS  PubMed  Google Scholar 

  107. Janik ME, Przybylo M, Pochec E et al (2010) Effect of alpha3beta1 and alphavbeta3 integrin glycosylation on interaction of melanoma cells with vitronectin. Acta Biochim Pol 57:55–61

    Article  CAS  PubMed  Google Scholar 

  108. Singh C, Shyanti RK, Singh V et al (2018) Integrin expression and glycosylation patterns regulate cell-matrix adhesion and alter with breast cancer progression. Biochem Biophys Res Commun 499:374–380

    Article  CAS  PubMed  Google Scholar 

  109. Huanna T, Tao Z, **angfei W et al (2015) GALNT14 mediates tumor invasion and migration in breast cancer cell MCF-7. Mol Carcinog 54:1159–1171

    Article  PubMed  Google Scholar 

  110. Xu C, Zhang M, Bian L et al (2020) N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis 9:4

    Article  PubMed  PubMed Central  Google Scholar 

  111. Costa AF, Campos D, Reis CA, Gomes C (2020) Targeting glycosylation: a New Road for Cancer Drug Discovery. Trends Cancer 6:757–766

    Article  CAS  PubMed  Google Scholar 

  112. Bertucci F, Gonçalves A (2017) Immunotherapy in breast Cancer: the emerging role of PD-1 and PD-L1. Curr Oncol Rep 19:64

    Article  PubMed  Google Scholar 

  113. Yang YH, Liu JW, Lu C, Wei JF (2022) CAR-T cell therapy for breast Cancer: from Basic Research to Clinical Application. Int J Biol Sci 18:2609–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang T, Kang L, Li D, Song Y (2023) Immunotherapy for HER-2 positive breast cancer. Front Oncol 13:1097983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu H, Ma L, Lin J et al (2020) Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer. Pharmacol Res 155:104738

    Article  CAS  PubMed  Google Scholar 

  116. Landuyt LV, Lonigro C, Meuris L, Callewaert N (2019) Customized protein glycosylation to improve biopharmaceutical function and targeting. Curr Opin Biotechnol 60:17–28

    Article  PubMed  Google Scholar 

  117. Chen F, Huang G (2019) Application of glycosylation in targeted drug delivery. Eur J Med Chem 182:111612

    Article  CAS  PubMed  Google Scholar 

  118. Ricciardiello F, Bergamaschi L, De Vitto H et al (2021) Suppression of the HBP function increases pancreatic cancer cell sensitivity to a pan-RAS inhibitor. Cells 10:431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hang HC, Bertozzi CR (2001) Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering. J Am Chem Soc 123:1242–1243

    Article  CAS  PubMed  Google Scholar 

  120. Rabuka D, Hubbard SC, Laughlin ST et al (2006) A chemical reporter strategy to probe glycoprotein fucosylation. J Am Chem Soc 128:12078–12079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Berthe A, Zafno M, Muller C et al (2018) Protein N-glycosylation alteration and glycolysis inhibition both contribute to the antiproliferative action of 2-deoxyglucose in breast cancer cells. Breast Cancer Res Treat 171:581–591

    Article  CAS  PubMed  Google Scholar 

  122. Ricciardiello F, Votta G, Palorini R et al (2018) Inhibition of the hexosamine biosynthetic pathway by targeting PGM3 causes breast cancer growth arrest and apoptosis. Cell Death Dis 9:1–17

    Article  CAS  Google Scholar 

  123. Zada S, Hwang JS, Ahmed M et al (2019) Protein kinase A activation by βLapachone is associated with apoptotic cell death in NQO1overexpressing breast cancer cells. Oncol Rep 42:1621–1630

    CAS  PubMed  Google Scholar 

  124. Peiris D, Spector AF, Lomax-Browne H et al (2017) Cellular glycosylation affects herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Sci Rep 7:43006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Crozier Jennifer A, LaPlant B, Timothy H et al (2016) A phase II trial of irinotecan with cetuximab in patients with metastatic breast Cancer previously exposed to anthracycline and/or taxane-containing therapy. Clin Breast Cancer 16:23–30

    Article  CAS  PubMed  Google Scholar 

  126. Zhang Y, Yang ND, Zhou F et al (2012) (-)-Epigallocatechin-3-Gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLoS ONE 7:e46749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zan L, Chen Q, Zhang L, Li X (2019) Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered 10:374–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hong OY, Noh EM, Jang HY et al (2017) Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol Lett 4:441–446

    Article  Google Scholar 

  129. Wang L, Li P, Feng K (2023) EGCG adjuvant chemotherapy: current status and future perspectives. Eur J Med Chem 250:115197

    Article  CAS  PubMed  Google Scholar 

  130. Kim BM, Kim DH, Park JH (2013) Ginsenoside Rg3 induces apoptosis of human breast Cancer (MDA-MB-231) cells. J Cancer Prev 18(2):177–185

    Article  PubMed  PubMed Central  Google Scholar 

  131. Agarwal A, Klueh U, Shih SC et al (2004) N-acetyl-cysteine promotes angiostatin production and vascular collapse in an orthotopic model of breast cancer. Am J Pathol 164:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Almaraz RT, Tian Y, Bhattarcharya R et al (2012) Metabolic flux increases glycoprotein sialylation: implications for cell adhesion and cancer metastasis. Mol Cell Prot 11:M112

    Article  Google Scholar 

  133. Nagel AK, Ball LE (2015) Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation. Adv Cancer Res 126:137–166

    Article  CAS  PubMed  Google Scholar 

  134. Lee JB, Pyo KH, Kim HR (2021) Role and function of O-GlcNAcylation in cancer. Cancers 13:5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yi W, Clark PM, Mason DE et al (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337:975e980

    Article  Google Scholar 

  136. Paneque A, Fortus H, Zheng J et al (2023) The Hexosamine Biosynthesis Pathway: regulation and function. Genes (Basel) 14:933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. de Queiroz RM, Oliveira IA, Piva B et al (2019) Hexosamine Biosynthetic Pathway and Glycosylation Regulate Cell Migration in Melanoma cells. Front Oncol 9:116

    Article  PubMed  PubMed Central  Google Scholar 

  138. Jia C, Li H, Fu D, Lan Y (2020) GFAT1/HBP/O-GlcNAcylation Axis Regulates β-Catenin Activity to Promote Pancreatic Cancer Aggressiveness. BioMed Res Int 2020: 1921609

  139. Chokchaitaweesuk C, Kobayashi T, Izumikawa T, Itano N (2019) Enhanced hexosamine metabolism drives metabolic and signaling networks involving hyaluronan production and O-GlcNAcylation to exacerbate breast cancer. Cell Death Dis 10:803

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chanmee T, Ontong P, Izumikawa T et al (2016) Hyaluronan production regulates metabolic and cancer stem-like properties of breast cancer cells via hexosamine biosynthetic pathway-coupled HIF-1 signaling. J Biol Chem 291:24105–24120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Moloughney JG, Vega-Cotto NM, Liu S et al (2018) mTORC2 modulates the amplitude and duration of GFAT1 Ser-243 phosphorylation to maintain flux through the hexosamine pathway during starvation. J Biol Chem 293:16464–16478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the discussion and language editing by Prof. Song Li from Dalian Medical University.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC 32170499 and 32070440).

Author information

Authors and Affiliations

Authors

Contributions

ZJ and SH drafted the main manuscript text; ZJ prepared figures; ZJ and WC edited and finalized the manuscript; WC and SD designed and supervised the whole project. All authors reviewed the manuscript and approved the submission.

Corresponding authors

Correspondence to Che Wang or De**g Shang.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Sun, H., Wang, C. et al. Breast cancer therapy: from the perspective of glucose metabolism and glycosylation. Mol Biol Rep 51, 546 (2024). https://doi.org/10.1007/s11033-024-09466-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09466-w

Keywords

Navigation