Log in

Interactions between AT1R and GRKs: the determinants for activation of signaling pathways involved in blood pressure regulation

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The success of Angiotensin II receptor blockers, specifically Angiotensin II type 1 receptor (AT1R) antagonists as antihypertensive drug emphasizes the involvement of AT1R in Essential hypertension. The structural insights and mutational studies of Ang II-AT1R have brought about the vision to design Ang II analogs that selectively activate the pathways with beneficial and cardioprotective effects such as cell survival and hinder the deleterious effects such as hypertrophy and cell death. AT1R belongs to G-protein coupled receptors and is regulated by G-protein coupled receptor kinases (GRKs) that either uncouples Gq protein for receptor desensitization or phosphorylate C-terminus to recruit β-arrestin for internalization of the receptor. The interaction of GRKs with ligand activated AT1R induces conformational changes and signal either Gq dependent or Gq independent pathways. These interactions might explain the complex regulatory mechanisms and offer promising ideas for hypertension therapeutics. This article reviews the functional role of AT1R, organization of GRK genes and regulation of AT1R by GRKs that play significant role in desensitization and internalization of the receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This declaration is not applicable.

References

  1. Carretero OA, Oparil S (2000) Essential hypertension: part I: definition and etiology. Circulation101:329 – 35

  2. Singh M, Singh AK, Pandey P, Chandra S, Singh KA, Gambhir IS (2016) Molecular genetics of Essential Hypertension. Clin Exp Hypertens 38:268–277

    Article  PubMed  Google Scholar 

  3. Charles L, Triscott J, Dobbs B (2017) Secondary Hypertension: discovering the underlying cause. Am Fam Physician 96:453–461

    PubMed  Google Scholar 

  4. Sabri M, Gheissari A, Mansourian M, Mohammadifard N, Sarrafzadegan N (2019) Essential Hypertension in children, a growing worldwide problem. J Res Med Sci 24:109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gupta R, Gaur K, Ram S CV (2019) Emerging trends in Hypertension epidemiology in India. J Hum Hypertens 3:575–587

    Article  Google Scholar 

  6. Iqbal AM, Jamal SF (2022) Essential Hypertension. InStatPearls [Internet] StatPearls Publishing

  7. Saxena T, Ali AO, Saxena M (2018) Pathophysiology of Essential Hypertension: an update. Expert Rev Cardiovasc Ther 16:879–887

    Article  PubMed  Google Scholar 

  8. Galvez T, Pin JP (2003) How do G-protein-coupled receptors work? The case of metabotropic glutamate and GABA receptors. Med Sci 19:559–565

    Google Scholar 

  9. Davey J (2004) G-protein-coupled receptors: new approaches to maximise the impact of GPCRS in drug discovery. Expert Opin Ther Targets 8:165–170

    Article  PubMed  Google Scholar 

  10. Young CN, Davisson RL (2015) Angiotensin-II, the brain, and Hypertension: an update. Hypertension 66:920–926

    Article  PubMed  Google Scholar 

  11. Nguyen Dinh Cat A, Touyz RM (2011) Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep 13:122–128

    Article  PubMed  Google Scholar 

  12. Tilley DG (2011) G protein–dependent and G protein–Independent signaling pathways and their impact on cardiac function. Circ Res 109:217–230

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chaudhary M, Chaudhary S (2017) Unravelling the lesser known facets of angiotensin II type 1 receptor. Curr Hypertens Rep 19:1–0

    Article  PubMed  Google Scholar 

  14. Patel SN, Fatima N, Ali R, Hussain T (2020) Emerging role of angiotensin AT2 receptor in anti-inflammation: an update. Curr Pharm Des 26:492–500

    Article  PubMed  PubMed Central  Google Scholar 

  15. Martin MM, Willardson BM, Burton GF, White CR, McLaughlin JN, Bray SM, Ogilvie JW Jr, Elton TS (2001) Human angiotensin II type 1 receptor isoforms encoded by messenger RNA splice variants are functionally distinct. Mol Endocrinol 15:281–293

    Article  PubMed  Google Scholar 

  16. Aplin M, Christensen GL, Schneider M, Heydorn A, Gammeltoft S, Kjølbye AL, Sheikh SP, Hansen JL (2007) The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein‐dependent and‐Independent pathways in cardiac myocytes and langendorff‐perfused hearts. Basic Clin Pharmacol Toxicol 100:289–295

    Article  PubMed  Google Scholar 

  17. Zhai P, Yamamoto M, Galeotti J, Liu J, Masurekar M, Thaisz J, Irie K, Holle E, Yu X, Kupershmidt S, Roden DM (2005) Cardiac-specific overexpression of AT1 receptor mutant lacking Gαq/Gαi coupling causes hypertrophy and bradycardia in transgenic mice. J Clin Invest 115:3045–3056

    Article  PubMed  PubMed Central  Google Scholar 

  18. D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn GW (1997) Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A 94:8121–8126

    Article  PubMed  PubMed Central  Google Scholar 

  19. Esposito G, Rapacciuolo A, Naga Prasad SV, Takaoka H, Thomas SA, Koch WJ, Rockman HA (2002) Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105:85–92

    Article  PubMed  Google Scholar 

  20. Aplin M, Bonde MM, Hansen JL (2009) Molecular determinants of angiotensin II type 1 receptor functional selectivity. J Mol Cell Cardiol 46:15–24

    Article  PubMed  Google Scholar 

  21. Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, Lefkowitz RJ (2003) Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci U S A 100:10782–10787

    Article  PubMed  PubMed Central  Google Scholar 

  22. Costa-Neto CM, Duarte DA, Lima V, Maria AG, Prando EC, Rodriguez DY, Santos GA, Souza PP, Parreiras-e-Silva LT (2014) Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci 126:753–774

    Article  Google Scholar 

  23. Santos RA, e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A 100:8258–8263

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peña Silva RA, Kung DK, Mitchell IJ, Alenina N, Bader M, Santos RA, Faraci FM, Heistad DD, Hasan DM (2014) Angiotensin 1–7 reduces mortality and rupture of intracranial aneurysms in mice. Hypertension 64:362–368

    Article  PubMed  Google Scholar 

  25. Noda K, Saad Y, Karnik SS (1995) Interaction of Phe8 of angiotensin II with Lys199 and His256 of AT1 receptor in agonist activation. J Biol Chem 270:28511–28514

    Article  PubMed  Google Scholar 

  26. Holloway AC, Qian H, Pipolo L, Ziogas J, Miura SI, Karnik S, Southwell BR, Lew MJ, Thomas WG (2002) Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 61:768–777

    Article  PubMed  Google Scholar 

  27. Wei H, Ahn S, Barnes WG, Lefkowitz RJ (2004) Stable interaction between β-arrestin 2 and angiotensin type 1A receptor is required for β-arrestin 2-mediated activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem 2004 279:48255-61

  28. Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen L, Schiller K, Whalen EJ, Gowen M, Lark MW (2010) Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335:572–579

    Article  PubMed  Google Scholar 

  29. Teixeira LB, Parreiras-e-Silva LT, Bruder-Nascimento T, Duarte DA, Simões SC, Costa RM, Rodríguez DY, Ferreira PA, Silva CA, Abrao EP, Oliveira EB (2017) Ang-(1–7) is an endogenous β-arrestin-biased agonist of the AT1 receptor with protective action in cardiac hypertrophy. Sci Rep 7:1–0

    Article  Google Scholar 

  30. De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger TH (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  31. Lavoie JL, Sigmund CD (2003) Minireview: overview of the renin-angiotensin system—an endocrine and paracrine system. Endocrinology 144:2179–2183

    Article  PubMed  Google Scholar 

  32. Nielsen AH, Schauser KH, Poulsen K (2000) Current topic: the uteroplacental renin–angiotensin system. Placenta 21:468–477

    Article  PubMed  Google Scholar 

  33. Hunyady L, Catt KJ (2006) Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 20:953–970

    Article  PubMed  Google Scholar 

  34. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081

    Article  PubMed  Google Scholar 

  35. Sallese M, Mariggio S, Collodel G, Moretti E, Piomboni P, Baccetti B, De Blasi A (1997) G protein-coupled receptor kinase GRK4: molecular analysis of the four isoforms and ultrastructural localization in spermatozoa and germinal cells. J Biol Chem 272:10188–10195

    Article  PubMed  Google Scholar 

  36. Virlon B, Firsov D, Cheval L, Reiter E, Troispoux C, Guillou F, Elalouf JM (1998) Rat G protein-coupled receptor kinase GRK4: identification, functional expression, and differential tissue distribution of two splice variants. Endocrinology 139:2784–2795

    Article  PubMed  Google Scholar 

  37. Sallese M, Salvatore L, D’Urbano E, Sala G, Storto M, Launey T, De Blasi A, Nicoletti F, Knopfel T (2000) The G-protein‐coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. FASEB J 14:2569–2580

    Article  PubMed  Google Scholar 

  38. Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ (1999) The GRK4 subfamily of G protein-coupled receptor kinases: alternative splicing, gene organization, and sequence conservation. J Biol Chem 274:29381–29389

    Article  PubMed  Google Scholar 

  39. Daaka Y, Pitcher JA, Richardson M, Stoffel RH, Robishaw JD, Lefkowitz RJ (1997) Receptor and Gβγ isoform-specific interactions with G protein-coupled receptor kinases. Proc Natl Acad Sci U S A 94:2180–2185

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein–coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  PubMed  Google Scholar 

  41. Drube J, Haider RS, Matthees ES, Reichel M, Zeiner J, Fritzwanker S, Ziegler C, Barz S, Klement L, Filor J, Weitzel V (2022) GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nat Commun 13:540

    Article  PubMed  PubMed Central  Google Scholar 

  42. King DW, Steinmetz R, Wagoner HA, Hannon TS, Chen LY, Eugster EA, Pescovitz OH (2003) Differential expression of GRK isoforms in nonmalignant and malignant human granulosa cells. Endocrine 22:135–141

    Article  PubMed  Google Scholar 

  43. Stoffel RH, Randall RR, Premont RT, Lefkowitz RJ, Inglese J (1994) Palmitoylation of G protein-coupled receptor kinase, GRK6. Lipid modification diversity in the GRK family. J Biol Chem 269:27791–27794

    Article  PubMed  Google Scholar 

  44. Stoffel RH, Inglese J, Macrae AD, Lefkowitz RJ, Premont RT (1998) Palmitoylation increases the kinase activity of the G protein-coupled receptor kinase, GRK6. Biochemistry 137:16053–16059

    Article  Google Scholar 

  45. Loudon RP, Benovic JL (1997) Altered activity of palmitoylation-deficient and isoprenylated forms of the G protein-coupled receptor kinase GRK6. J Biol Chem 272:27422–27427

    Article  PubMed  Google Scholar 

  46. Premont RT, Koch WJ, Inglese J, Lefkowitz RJ (1994) Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J Biol Chem 269:6832–6841

    Article  PubMed  Google Scholar 

  47. Wedegaertner PB, Bourne HR (1994) Activation and depalmitoylation of Gsα. Cell 77:1063–1070

    Article  PubMed  Google Scholar 

  48. Loudon RP, Perussia B, Benovic JL (1996) Differentially regulated expression of the G-protein-coupled receptor kinases, beta ARK and GRK6, during myelomonocytic cell development in vitro. Blood 88:4547–4557

  49. Penn RB, Benovic JL (1994) Structure of the human gene encoding the beta-adrenergic receptor kinase. J Biol Chem 269:14924–14930

    Article  PubMed  Google Scholar 

  50. Premont RT, Macrae AD, Stoffel RH, Chung N, Pitcher JA, Ambrose C, Inglese J, MacDonald ME, Lefkowitz RJ (1996) Characterization of the G protein-coupled receptor kinase GRK4: identification of four splice variants. J Biol Chem 271:6403–6410

    Article  PubMed  Google Scholar 

  51. Sato M, Blumer JB, Simon V, Lanier SM (2006) Accessory proteins for G proteins: partners in signaling. Annu Rev Pharmacol Toxicol 46:151–187

    Article  PubMed  Google Scholar 

  52. Watari K, Nakaya M, Kurose H (2014) Multiple functions of G protein-coupled receptor kinases. J Mol Signal 9:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  53. Onorato JJ, Palczewski K, Regan JW, Caron MG, Lefkowitz RJ, Benovic JL (1991) Role of acidic amino acids in peptide substrates of the beta-adrenergic receptor kinase and rhodopsin kinase. Biochemistry 30:5118–5125

    Article  PubMed  Google Scholar 

  54. Kunapuli P, Onorato JJ, Hosey MM, Benovic JL (1994) Expression, purification, and characterization of the G protein-coupled receptor kinase GRK5. J Biol Chem 269:1099–1105

    Article  PubMed  Google Scholar 

  55. Tóth AD, Prokop S, Gyombolai P, Várnai P, Balla A, Gurevich VV, Hunyady L, Turu G (2018) Heterologous phosphorylation–induced formation of a stability lock permits regulation of inactive receptors by β-arrestins. J Biol Chem 293:876–892

    Article  PubMed  Google Scholar 

  56. Gáborik Z, Hunyady L (2004) Intracellular trafficking of hormone receptors. Trends Endocrinol Metab 15:286–293

    Article  PubMed  Google Scholar 

  57. Pronin AN, Benovic JL (1997) Regulation of the G protein-coupled receptor kinase GRK5 by protein kinase C. J Biol Chem 1272:3806–3812

    Article  Google Scholar 

  58. Kawakami K, Yanagawa M, Hiratsuka S, Yoshida M, Ono Y, Hiroshima M, Ueda M, Aoki J, Sako Y, Inoue A (2022) Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias. Nat Commun 13:487

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J Mol Biol 406:467–478

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shenoy SK, Lefkowitz RJ (2005) Angiotensin II–stimulated signaling through G proteins and β-arrestin. Sci STKE 2005:cm14-

  61. Wingler LM, Elgeti M, Hilger D, Latorraca NR, Lerch MT, Staus DP, Dror RO, Kobilka BK, Hubbell WL, Lefkowitz RJ (2019) Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell 176:468–478

    Article  PubMed  PubMed Central  Google Scholar 

  62. Miura SI, Karnik SS (1999) Angiotensin II type 1 and type 2 receptors bind angiotensin II through different types of epitope recognition. J Hypertens 17:397–404

    Article  PubMed  Google Scholar 

  63. Zhang H, Luginina A, Mishin A, Baidya M, Shukla AK, Cherezov V (2021) Structural insights into ligand recognition and activation of angiotensin receptors. Trends Pharmacol Sci 42:577–587

    Article  PubMed  PubMed Central  Google Scholar 

  64. Akazawa H, Yano M, Yabumoto C, Kudo-Sakamoto Y, Komuro I (2013) Angiotensin II type 1 and type 2 receptor-induced cell signaling. Curr Pharm Des 19:2988–2995

    Article  PubMed  Google Scholar 

  65. Wingler LM, Lefkowitz RJ (2020) Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol 30:736–747

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cao Y, van der Velden WJ, Namkung Y, Nivedha AK, Cho A, Sedki D, Laporte SA (2023) Unraveling allostery within the angiotensin II type 1 receptor for Gαq and β-arrestin coupling. Sci Signal 16:797

    Article  Google Scholar 

  67. Grogan A, Lucero EY, Jiang H, Rockman HA (2023) Pathophysiology and pharmacology of G protein-coupled receptors in the heart. Cardiovasc Res 119:1117–1129

    Article  PubMed  Google Scholar 

Download references

Funding

The fellowship is provided by UGC with ID: 201920-19J6107081 to P.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Shashi Chaudhary and Poonam. Drafting of the article: Shashi Chaudhary and Poonam. Critical revision of the article for important intellectual content: Shashi Chaudhary. Final approval of the article: Shashi Chaudhary. All authors approved the final version of the article.

Corresponding author

Correspondence to Shashi Chaudhary.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This declaration is not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonam, Chaudhary, S. Interactions between AT1R and GRKs: the determinants for activation of signaling pathways involved in blood pressure regulation. Mol Biol Rep 51, 46 (2024). https://doi.org/10.1007/s11033-023-08995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-08995-0

Keywords

Navigation