Log in

Mitochondrial biogenesis and apoptosis as underlying mechanisms involved in the cardioprotective effects of Gallic acid against D-galactose-induced aging

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Aging is a main risk factor for the development of cardiovascular diseases (CVDs). Gallic acid (GA) is a phenolic compound derived from a wide range of fruits. GA has a wide spectrum of pharmacological properties, including anti-oxidative, anti-inflammatory, and cardioprotective effects. This research was conducted to determine the cardioprotective effect of GA on cardiac hypertrophy in aged rats.

Methods and results

Following histological evaluation and through observing the heart, we found that GA improved the cardiac hypertrophy induced by D-galactose (D-GAL) in cardiac cells. To clarify the causes for this anti-aging effect, we evaluated the malonic dialdehyde levels and antioxidant enzyme activity in rat cardiac tissue. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK-MB) in serum were measured. The levels of genes related to mitochondrial biogenesis, mitophagy, and apoptosis in cardiac tissue were surveyed. The findings represented that GA ameliorated antioxidant enzyme activity while significantly decreasing the malonic dialdehyde levels. Real-time PCR analysis proposed that GA effectively improved mitochondrial biogenesis in the heart via regulating the expression levels of Sirtuin 1 (SIRT1), PPARγ coactivator 1α (PGC1-α), nuclear factor erythroid 2–related factor 2 (Nrf2), and mitochondrial transcription factor A (TFAM). GA also mitigated apoptosis in the heart by modulating the expression levels of B-cell lymphoma protein 2 (Bcl-2) and Bcl-2-associated X (Bax). In addition, GA improved serum LDH and CK-MB levels.

Conclusions

GA may alleviate aging-induced cardiac hypertrophy via anti-oxidative, mitoprotective, and anti-apoptotic mechanisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used and analyzed in this study are available from the Corresponding author on reasonable request.

Abbreviations

CVDs:

Cardiovascular diseases

GA:

Gallic acid

D-GAL:

D-galactose

SIRT1:

Sirtuin 1

PGC1-ɑ:

PPARγ coactivator 1-α

TFAM:

Transcription Factor A, Mitochondrial

Bcl2:

B-cell lymphoma protein 2

Bax:

(Bcl-2)-associated X

PINK:

PTEN induced putative kinase 1

Drp1:

Dynamin related protein 1

Mfn1:

Mitofusin-1

Mfn2:

Mitofusin-2

ROS:

Reactive oxygen species

NAD:

Nicotinamide adenine dinucleotide

CONT:

Control

CK-MB:

Creatine kinase

LDH:

Lactate dehydrogenase

MDA:

Malonic dialdehyde

SOD:

Superoxide dismutase

GPx:

Glutathione peroxidase

CAT:

Catalase

ELISA:

Enzyme-linked immunosorbent assay

qRT-PCR:

Quantitative Real-Time Polymerase chain reaction

HW:

Heart Weight

BW:

Body Weight

H&E:

Hematoxylin and eosin

SE:

Standard error

ANOVA:

Analysis of variance

WHW:

Whole Heart Weight

Nrf2:

Nuclear factor erythroid 2–related factor 2

References

  1. Franceschi C et al (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med 5:61

    Article  Google Scholar 

  2. Wu NN, Zhang Y, Ren J (2019) Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging. Oxid Med Cell Longev

  3. de Almeida AJPO et al (2020) Unveiling the role of inflammation and oxidative stress on age-related cardiovascular diseases. Oxid Med Cell Longev

  4. Obas V, Vasan RS (2018) The aging heart. Clin Sci 132(13):1367–1382

    Article  CAS  Google Scholar 

  5. Quan Y et al (2020) Mitochondrial ROS-modulated mtDNA: a potential target for cardiac aging. Oxid Med Cell Longev

  6. Ahola S et al (2022) OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab 34(11):1875–1891

    Article  CAS  PubMed  Google Scholar 

  7. Guo Q et al (2020) Oxidative stress, nutritional antioxidants and beyond. Sci China Life Sci 63:866–874

    Article  CAS  PubMed  Google Scholar 

  8. Alkadi H (2020) A review on free radicals and antioxidants. Infect Disord Drug Targets 20(1):16–26

    CAS  PubMed  Google Scholar 

  9. Wang J et al (2020) Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function. Aging 12(1):650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gong Y et al (2022) Pentacyclic triterpene oleanolic acid protects against cardiac aging through regulation of mitophagy and mitochondrial integrity. Biochim Biophys Acta – Mol 1868(7):166402

    Article  CAS  Google Scholar 

  11. Alizadeh Pahlavani H et al (2022) Exercise and mitochondrial mechanisms in patients with sarcopenia. Front Physiol 13:2543

    Article  Google Scholar 

  12. Zhao Y et al (2021) NAD + improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflammation 18(1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramachandra CJ et al (2020) Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine 57:102884

    Article  PubMed  PubMed Central  Google Scholar 

  14. Forte M et al (2021) The role of mitochondrial dynamics in cardiovascular diseases. Br J Pharmacol 178(10):2060–2076

    Article  CAS  PubMed  Google Scholar 

  15. Wang DK et al (2022) Mitochondrial dysfunction in oxidative stress-mediated intervertebral disc degeneration. Orthop Surg 14(8):1569–1582

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang F et al (2022) Silica nanoparticles induce pyroptosis and cardiac hypertrophy via ROS/NLRP3/Caspase-1 pathway. Free Radic Biol Med 182:171–181

    Article  CAS  PubMed  Google Scholar 

  17. Yu H et al (2021) LARP7 protects against heart failure by enhancing mitochondrial biogenesis. Circulation 143(20):2007–2022

    Article  CAS  PubMed  Google Scholar 

  18. Li S et al (2022) Isoorientin attenuates doxorubicin-induced cardiac injury via the activation of MAPK, akt, and caspase-dependent signaling pathways. Phytomedicine 101:154105

    Article  CAS  PubMed  Google Scholar 

  19. Tuli HS et al (2022) Gallic acid: a dietary polyphenol that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Anti-Cancer Agents Med Chem 22(3):499–514

    Article  CAS  Google Scholar 

  20. Zamudio-Cuevas Y et al (2022) Anti-inflammatory and antioxidant effect of poly-gallic acid (PGAL) in an in vitro model of Synovitis Induced by Monosodium Urate crystals. Inflammation 45(5):2066–2077

    Article  CAS  PubMed  Google Scholar 

  21. Su T-R et al (2013) Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci 14(10):20443–20458

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu Y-Z et al (2021) Evaluation of gallic acid-coated gold nanoparticles as an anti-aging ingredient. Pharmaceuticals 14(11):1071

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shackebaei D et al (2022) Gallic acid protects against isoproterenol-induced cardiotoxicity in rats. Hum Exp Toxicol 41:09603271211064532

    Article  CAS  Google Scholar 

  24. Ramezani-Aliakbari F et al (2019) Gallic acid improves oxidative stress and inflammation through regulating micrornas expressions in the blood of diabetic rats. Acta Endocrinol 15(2):187

    CAS  Google Scholar 

  25. Ramezani-Aliakbari F et al (2019) Protective effects of gallic acid on cardiac electrophysiology and arrhythmias during reperfusion in diabetes. Iran J Basic Med Sci 22(5):515

    PubMed  PubMed Central  Google Scholar 

  26. Dehghani A et al (2019) Resveratrol and 1, 25-dihydroxyvitamin D co-administration protects the heart against D-galactose-induced aging in rats: evaluation of serum and cardiac levels of klotho. Aging Clin Exp Res 31:1195–1205

    Article  PubMed  Google Scholar 

  27. Olgar Y et al (2018) Aging related functional and structural changes in the heart and aorta: MitoTEMPO improves aged-cardiovascular performance. Exp Gerontol 110:172–181

    Article  PubMed  Google Scholar 

  28. Amini N et al (2022) The renoprotective effects of gallic acid on cisplatin-induced nephrotoxicity through anti-apoptosis, anti-inflammatory effects, and downregulation of lncRNA TUG1. Naunyn-Schmiedeb Arch Pharmacol 395(6):691–701

    Article  CAS  Google Scholar 

  29. Ghahremani R et al (2018) Mitochondrial dynamics as an underlying mechanism involved in aerobic exercise training-induced cardioprotection against ischemia-reperfusion injury. Life sci 213:102–108

    Article  CAS  PubMed  Google Scholar 

  30. Kumar H et al (2022) Antioxidative potential of Lactobacillus sp. in ameliorating D-galactose-induced aging. Appl Microbiol Biotechnol 106(13–16):4831–4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hajam YA et al (2022) Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells 11(3):552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qian J et al (2021) Dihydromyricetin attenuates D-galactose-induced brain aging of mice via inhibiting oxidative stress and neuroinflammation. Neurosci Lett 756:135963

    Article  CAS  PubMed  Google Scholar 

  33. Chang Y-M et al (2021) Adipose derived mesenchymal stem cells along with Alpinia oxyphylla extract alleviate mitochondria-mediated cardiac apoptosis in aging models and cardiac function in aging rats. J Ethnopharmacol 264:113297

    Article  CAS  PubMed  Google Scholar 

  34. Fivenson EM et al (2017) Mitophagy in neurodegeneration and aging. Neurochem Int 109:202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Almalki WH et al (2020) The emerging potential of SIRT-3 in oxidative stress-inflammatory axis associated increased neuroinflammatory component for metabolically impaired neural cell. Chem Biol Interact 333:109328–109328

    Article  PubMed  Google Scholar 

  36. Lemecha M et al (2018) MiR-494-3p regulates mitochondrial biogenesis and thermogenesis through PGC1-α signalling in beige adipocytes. Sci Rep 8(1):15096

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mahdavi N et al (2022) Promotion of aging heart function and its redox balance following hind-limb blood flow restriction plus endurance exercise training in rats: klotho and PGC1-α as involving candidate molecules. Pflug Arch Eur J Physiol 474(7):699–708

    Article  CAS  Google Scholar 

  38. Yao K et al (2016) Carvedilol promotes mitochondrial biogenesis by regulating the PGC-1/TFAM pathway in human umbilical vein endothelial cells (HUVECs). Biochem Biophys Res Commun 470(4):961–966

    Article  CAS  PubMed  Google Scholar 

  39. Domjanić Drozdek S et al (2022) The Effects of Nettle Extract Consumption on Liver PPARs, SIRT1, ACOX1 and blood lipid levels in male and female C57Bl6 mice. Nutrients 14(21):4469

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kogot-Levin A et al (2016) Upregulation of mitochondrial content in cytochrome c oxidase deficient fibroblasts. PLoS ONE 11(10):0165417

    Article  Google Scholar 

  41. Tsushima M et al (2020) Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch Pharm Res 43:286–296

    Article  CAS  PubMed  Google Scholar 

  42. Huang Q et al (2021) A SIRT1 activator, ginsenoside rc, promotes energy metabolism in cardiomyocytes and neurons. J Am Chem Soc 143(3):1416–1427

    Article  CAS  PubMed  Google Scholar 

  43. Ren Bc et al (2020) Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K‐Akt signalling pathways. J Cell Mol Med 24(21):12355–12367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang W-x et al (2019) Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. Life Sci 217:8–15

    Article  CAS  PubMed  Google Scholar 

  45. Ma T et al (2021) SFRP2 improves mitochondrial dynamics and mitochondrial biogenesis, oxidative stress, and apoptosis in diabetic cardiomyopathy. Oxid Med Cell Longev

Download references

Acknowledgements

The authors would like to thank the Hamadan University of Medical Sciences for funding.

Funding

The study was funded by Vice-chancellor for Research and Technology, Hamadan University of Medical Sciences (No. 140005123991).

Author information

Authors and Affiliations

Authors

Contributions

MZ: Investigation, Supervision, Project administration. AS: Conceptualization, Formal analysis, Writing - Review & Editing. AZ: Formal analysis, Writing - Review & Editing. SR: Investigation. SAK: Writing - Review & Editing. FRA: Conceptualization, Formal analysis, Investigation, Writing - Original Draft, Funding acquisition. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Fatemeh Ramezani-Aliakbari.

Ethics declarations

Ethics approval and consent to participate

Ethical approval was granted by the Ethics Committee of Hamadan University of Medical Sciences (Ethics Committee permission No. IR.UMSHA.REC.1400.270).

Consent for publication

None.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Preprint

The present study has been submitted to a preprint platform. DOI: https://doi.org/10.21203/rs.3.rs-2491748/v1, Posted Date: January 23rd, 2023, License: This work is licensed under a Creative Commons Attribution 4.0 International License.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, M., Sarihi, A., Zamani, A. et al. Mitochondrial biogenesis and apoptosis as underlying mechanisms involved in the cardioprotective effects of Gallic acid against D-galactose-induced aging. Mol Biol Rep 50, 8005–8014 (2023). https://doi.org/10.1007/s11033-023-08670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08670-4

Keywords

Navigation