Log in

Breeding strategies for late blight resistance in potato crop: recent developments

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Late blight (LB) is a serious disease that affects potato crop and is caused by Phytophthora infestans. Fungicides are commonly used to manage this disease, but this practice has led to the development of resistant strains and it also poses serious environmental and health risks. Therefore, breeding for resistance development can be the most effective strategies to control late blight. Various Solanum species have been utilized as a source of resistance genes to combat late blight disease. Several potential resistance genes and quantitative resistance loci (QRLs) have been identified and mapped through the application of molecular techniques. Furthermore, molecular markers closely linked to resistance genes or QRLs have been utilized to hasten the breeding process. However, the use of single-gene resistance can lead to the breakdown of resistance within a short period. To address this, breeding programs are now being focused on development of durable and broad-spectrum resistant cultivars by combining multiple resistant genes and QRLs using advanced molecular breeding tools such as marker-assisted selection (MAS) and cis-genic approaches. In addition to the strategies mentioned earlier, somatic hybridization has been utilized for the development and characterization of interspecific somatic hybrids. To further broaden the scope of late blight resistance breeding, approaches such as genomic selection, RNAi silencing, and various genome editing techniques can be employed. This study provides an overview of recent advances in various breeding strategies and their applications in improving the late blight resistance breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Lal M, Arora RK, Maheshwari U et al (2016) Impact of late blight occurrence on potato productivity during 2013-14. Int J Agric Stat Sci 12:187–192

    Google Scholar 

  2. Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9:385–402. https://doi.org/10.1111/j.1364-3703.2007.00465.x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Puthanveed V (2018) Study of environmental and genetic factors affecting functional expression of late blight resistance. Wagningen University and Research, The Netherlands

    Google Scholar 

  4. Dey T, Saville A, Myers K et al (2018) Large sub-clonal variation in Phytophthora infestans from recent severe late blight epidemics in India. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22192-1

    Article  CAS  Google Scholar 

  5. Goodwin SB, Drenth A (1997) Origin of the A2 mating type of phytophthora infestans outside mexico. Phytopathology 87:992–999. https://doi.org/10.1094/phyto.1997.87.10.992

    Article  CAS  PubMed  Google Scholar 

  6. Goodwin SB, Cohen BA, Deahl KL, Fry WE (1994) Migration from Northern Mexico as the probable cause of recent genetic changes in populations of Phytophthora infestans in the United States and Canada. Phytopathology 84:553–558

    Article  Google Scholar 

  7. Spielman LJ, Drenth A, Davidse LC et al (1991) A second world-wide migration and population displacement of Phytophthora infestans? Plant Pathol 40:422–430. https://doi.org/10.1111/j.1365-3059.1991.tb02400.x

    Article  Google Scholar 

  8. Lebreton lionel, Andrivon D (1998) French isolates of Phytophthora infestans from potato and tomato differ in phenotype and genotype Lionel. Eur J of Plant Pathol 104:583–594. https://doi.org/10.1023/A

    Article  Google Scholar 

  9. Gisi U, Cohen Y (1996) Resistance to phenylamide fungicides: a case study with Phytophthora infestans involving mating type and race structure. Annu Rev Phytopathol 34:549–572. https://doi.org/10.1146/annurev.phyto.34.1.549

    Article  CAS  PubMed  Google Scholar 

  10. Chowdappa P, Nirmal Kumar BJ, Madhura S et al (2015) Severe outbreaks of late blight on potato and tomato in South India caused by recent changes in the Phytophthora infestans population. Plant Pathol 64:191–199. https://doi.org/10.1111/ppa.12228

    Article  CAS  Google Scholar 

  11. Fry WE, Goodwin SB (1997) Re-emergence of potato and tomato late blight in the United States. Plant Dis 81:1349–1357. https://doi.org/10.1007/978-3-662-44056-8_9

    Article  PubMed  Google Scholar 

  12. Li Y, Van Der Lee TAJ, Evenhuis A et al (2012) Population dynamics of Phytophthora infestans in the netherlands reveals expansion and spread of dominant clonal lineages and virulence in sexual offspring. G3 genes, genomes. Genet 2:1529–1540. https://doi.org/10.1534/g3.112.004150

    Article  CAS  Google Scholar 

  13. Gopal J (2023) Status and way-forward in breeding potato (Solanum tuberosum) for resistance to late blight. Indian J Agric Sci 93:3–10. https://doi.org/10.56093/ijas.v93i1.119721

    Article  CAS  Google Scholar 

  14. Tiwari JK, Siddappa S, Singh BP et al (2013) Molecular markers for late blight resistance breeding of potato: an update. Plant Breed 132:237–245. https://doi.org/10.1111/pbr.12053

    Article  CAS  Google Scholar 

  15. Wang M, Allefs S, Van Den Berg RG et al (2008) Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theor Appl Genet 116:933–943. https://doi.org/10.1007/s00122-008-0725-3

    Article  CAS  PubMed  Google Scholar 

  16. Angmo D, Sharma SP, Kalia A et al (2022) Effect of cold stress on field performance, chlorophyll fluorescence, electrolyte leakage and leaf gas exchange parameters of potato (Solanum tuberosum L.) genotypes. https://doi.org/10.1007/s11540-022-09593-6. Potato Res

  17. Huang S (2005) Discovery and characterization of the major late blight resistance complex in potato. Wageningen University, The Netherlands

    Google Scholar 

  18. Jo KR, Visser RGF, Jacobsen E, Vossen JH (2015) Characterisation of the late blight resistance in potato differential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-2 2 homologs on chromosome IX. Theor Appl Genet 128:931–941. https://doi.org/10.1007/s00122-015-2480-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. zhang and kim 2007.pdf

  20. Śliwka J, Jakuczun H, Chmielarz M et al (2012) Late blight resistance gene from Solanum ruiz-ceballosii is located on potato chromosome X and linked to violet flower colour. BMC Genet 13:11. https://doi.org/10.1186/1471-2156-13-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang L, Wang D, Xu Y et al (2017) A new resistance gene against potato late blight originating from Solanum pinnatisectum located on potato chromosome 7. Front Plant Sci 8:1–10. https://doi.org/10.3389/fpls.2017.01729

    Article  Google Scholar 

  22. Kover PX, Caicedo AL (2001) The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites: invited review. Mol Ecol 10:1–16. https://doi.org/10.1046/j.1365-294X.2001.01124.x

    Article  CAS  PubMed  Google Scholar 

  23. Park TH, Vleeshouwers VGAA, Jacobsen E et al (2009) Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a perspective of cisgenesis. Plant Breed 128:109–117. https://doi.org/10.1111/j.1439-0523.2008.01619.x

    Article  CAS  Google Scholar 

  24. Hein I, Birch PRJ, Danan S et al (2009) Progress in map** and cloning qualitative and quantitative resistance against phytophthora infestans in potato and its wild relatives. Potato Res 52:215–227. https://doi.org/10.1007/s11540-009-9129-2

    Article  Google Scholar 

  25. Ortiz R (2020) Genomic-led potato breeding for increasing genetic gains: achievements and Outlook. Crop Breed Genet Genomics 2:1–25. https://doi.org/10.20900/cbgg20200010

    Article  Google Scholar 

  26. Bhardwaj V Recent advances in biotic & abiotic stress management Biotic

  27. Bormann CA, Rickert AM, Ruiz RAC et al (2004) Tagging quantitative trait loci for maturity-corrected late blight resistance in tetraploid potato with PCR-based candidate gene markers. Mol Plant-Microbe Interact 17:1126–1138. https://doi.org/10.1094/MPMI.2004.17.10.1126

    Article  CAS  PubMed  Google Scholar 

  28. Haas BJ, Kamoun S, Zody MC et al (2009) Genome sequence and analysis of the irish potato famine pathogen Phytophthora infestans. Nature 461:393–398. https://doi.org/10.1038/nature08358

    Article  CAS  PubMed  Google Scholar 

  29. Brylińska M, Tomczyńska I, Jakuczun H et al (2015) Fine map** of the Rpi-rzc1 gene conferring broad-spectrum resistance to potato late blight. Eur J Plant Pathol 143:193–198. https://doi.org/10.1007/s10658-015-0663-2

    Article  CAS  Google Scholar 

  30. Jupe F, Witek K, Verweij W et al (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid map** of resistance loci in segregating populations. Plant J 76:530–544. https://doi.org/10.1111/tpj.12307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mainali Ram (2018) Breeding for resistance in Solanaceae. MSc Thesis Plant Breeding (PBR- 80436) Laboratory of Plant Breeding, Wageningen University and Research 1–45

  32. Chen X, Lewandowska D, Armstrong MR et al (2018) Identification and rapid map** of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. Theor Appl Genet 131:1287–1297. https://doi.org/10.1007/s00122-018-3078-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Śliwka J, Jakuczun H, Lebecka R et al (2006) The novel, major locus Rpi-phu1 for late blight resistance maps to potato chromosome IX and is not correlated with long vegetation period. Theor Appl Genet 113:685–695. https://doi.org/10.1007/s00122-006-0336-9

    Article  CAS  PubMed  Google Scholar 

  34. Chakrabarti SK, Singh BP, Thakur G et al (2014) QTL analysis of late blight resistance in a diploid Potato Family of Solanum spegazzinii × S. chacoense. Potato Res 57:1–11. https://doi.org/10.1007/s11540-014-9249-1

    Article  Google Scholar 

  35. Jiang R, Li J, Tian Z et al (2018) Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8. J Exp Bot 69:1545–1555. https://doi.org/10.1093/jxb/ery021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Santa JD, Berdugo-Cely J, Cely-Pardo L et al (2018) QTL analysis reveals quantitative resistant loci for Phytophthora infestans and Tecia solanivora in tetraploid potato (Solanum tuberosum L). PLoS ONE 13:1–21. https://doi.org/10.1371/journal.pone.0199716

    Article  CAS  Google Scholar 

  37. Danan S, Veyrieras JB, Lefebvre V (2011) Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol 11. https://doi.org/10.1186/1471-2229-11-16

  38. Siddique MI, Lee HY, Ro NY et al (2019) Identifying candidate genes for Phytophthora capsici resistance in pepper (Capsicum annuum) via genoty**-by-sequencing-based QTL map** and genome-wide association study. Sci Rep 9:1–15. https://doi.org/10.1038/s41598-019-46342-1

    Article  CAS  Google Scholar 

  39. Lindqvist-kreuze H, Orrillo M, Perez W et al Molecular assisted assessment of late blight resistance in potato. 32–36

  40. Sharma SK, MacKenzie K, McLean K et al (2018) Linkage disequilibrium and evaluation of genome-wide association map** models in tetraploid potato. G3 genes. Genomes Genet 8:3185–3202. https://doi.org/10.1534/g3.118.200377

    Article  CAS  Google Scholar 

  41. Álvarez MF, Angarita M, Delgado MC et al (2017) Identification of novel associations of candidate genes with resistance to late blight in solanum tuberosum group phureja. Front Plant Sci 8:1–11. https://doi.org/10.3389/fpls.2017.01040

    Article  Google Scholar 

  42. Mosquera T, Alvarez MF, Jiménez-Gómez JM et al (2016) Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNPs for quantitative resistance of the potato (Solanum tuberosum L.) to Phytophthora infestans causing the late blight disease. PLoS ONE 11:1–36. https://doi.org/10.1371/journal.pone.0156254

    Article  CAS  Google Scholar 

  43. Juyo Rojas DK, Soto Sedano JC, Ballvora A et al (2019) Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PLoS ONE 14:e0213818. https://doi.org/10.1371/journal.pone.0213818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shandil RK, Chakrabarti SK, Singh BP et al (2017) Genotypic background of the recipient plant is crucial for conferring RB gene mediated late blight resistance in potato. BMC Genet 18:1–8. https://doi.org/10.1186/s12863-017-0490-x

    Article  CAS  Google Scholar 

  45. Forbes G, Perez W, Andrade-Piedra J (2014) Field assessment of resistance in potato to Phytophthora infestans. International Cooperators Guide

  46. Sugiura R, Tsuda S, Tamiya S et al (2016) Field phenoty** system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosyst Eng 148:1–10. https://doi.org/10.1016/j.biosystemseng.2016.04.010

    Article  Google Scholar 

  47. Duarte-Carvajalino JM, Alzate DF, Ramirez AA et al (2018) Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sens 10. https://doi.org/10.3390/rs10101513

  48. Gao J, Westergaard JC, Sundmark EHR et al (2021) Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning. Knowledge-Based Syst 214. https://doi.org/10.1016/j.knosys.2020.106723

  49. Polder G, Blok PM, de Villiers HAC et al (2019) Potato virus Y detection in seed potatoes using deep learning on hyperspectral images. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00209

  50. Chawade A, Alexandersson E, Bengtsson T et al (2016) Targeted Proteomics Approach for Precision Plant breeding. J Proteome Res 15:638–646. https://doi.org/10.1021/acs.jproteome.5b01061

    Article  CAS  PubMed  Google Scholar 

  51. Dammer KH, Dworak V, Selbeck J (2016) On-the-go phenoty** in Field Potatoes using Camera Vision. Potato Res 59:113–127. https://doi.org/10.1007/s11540-016-9315-y

    Article  Google Scholar 

  52. Sliwka J, Jakuczun H, Kamiñski P (2010) Marker-assisted selection of diploid and tetraploid potatoes carrying Rpi-phu1, a major gene for resistance to Phytophthora infestans. J appl Genet 51:133–140

    Article  CAS  PubMed  Google Scholar 

  53. Chen S, Borza T, Byun B et al (2017) DNA markers for selection of late blight resistant potato breeding lines. Am J Plant Sci 08:1197–1209. https://doi.org/10.4236/ajps.2017.86079

    Article  CAS  Google Scholar 

  54. Tiwari JK, Luthra SK, Devi S et al (2018) Development of advanced back-cross progenies of potato somatic hybrids and linked issr markers for late blight resistance with diverse genetic base-first ever produced in indian potato breeding. Potato J 45:17–27

    Google Scholar 

  55. Scheben A, Batley J, Edwards D (2017) Genoty**-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161. https://doi.org/10.1111/pbi.12645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shamshad M, Sharma A (2018) The usage of genomic selection strategy in plant breeding. Next Gener Plant Breed. https://doi.org/10.5772/intechopen.76247

    Article  Google Scholar 

  57. Sverrisdóttir E (2017) Initiating genomic selection in tetraploid potato. Aalborg Universitet

  58. Enciso-Rodriguez F, Douches D, Lopez-Cruz M et al (2018) Genomic selection for late blight and common scab resistance in tetraploid potato (Solanum tuberosum). G3 genes. Genomes Genet 8:2471–2481. https://doi.org/10.1534/g3.118.200273

    Article  CAS  Google Scholar 

  59. Caruana BM, Pembleton LW, Constable F et al (2019) Validation of genoty** by sequencing using transcriptomics for diversity and application of genomic selection in tetraploid potato. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00670

  60. Carpenter MA, Goulden DS, Woods CJ et al (2018) Genomic selection for ascochyta blight resistance in pea. Front Plant Sci 871:1–13. https://doi.org/10.3389/fpls.2018.01878

    Article  Google Scholar 

  61. Mekonnen T, Haileselassie T, Tesfaye K (2017) Identification, map** and pyramiding of genes/quantitative trait loci (qtls) for durable resistance of crops to biotic stresses. J Plant Pathol Microbiol 08. https://doi.org/10.4172/2157-7471.1000412

  62. Jo KR, Arens M, Kim TY et al (2011) Map** of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX. Theor Appl Genet 123:1331–1340. https://doi.org/10.1007/s00122-011-1670-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vleeshouwers VGAA, Raffaele S, Vossen JH et al (2011) Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49:507–531. https://doi.org/10.1146/annurev-phyto-072910-095326

    Article  CAS  PubMed  Google Scholar 

  64. Joshi RK, Nayak S (2010) < Gene pyramiding.pdf>. 5:51–60

  65. Rietman H, Bijsterbosch G, Cano LM et al (2012) Qualitative and quantitative late blight resistance in the potato cultivar Sarpo Mira is determined by the perception of five distinct RXLR effectors. Mol Plant-Microbe Interact 25:910–919. https://doi.org/10.1094/MPMI-01-12-0010-R

    Article  CAS  PubMed  Google Scholar 

  66. Tan MYA, Hutten RCB, Visser RGF, van Eck HJ (2010) The effect of pyramiding Phytophthora infestans resistance genes RPi-mcd1 and RPi-ber in potato. Theor Appl Genet 121:117–125. https://doi.org/10.1007/s00122-010-1295-8

    Article  PubMed  PubMed Central  Google Scholar 

  67. Haverkort AJ, Boonekamp PM, Hutten R et al (2008) Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res 51:47–57. https://doi.org/10.1007/s11540-008-9089-y

    Article  Google Scholar 

  68. Zhu S, Li Y, Vossen JH et al (2012) Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res 21:89–99. https://doi.org/10.1007/s11248-011-9510-1

    Article  CAS  PubMed  Google Scholar 

  69. Jo KR, Kim CJ, Kim SJ et al (2014) Development of late blight resistant potatoes by cisgene stacking. BMC Biotechnol 14:1–10. https://doi.org/10.1186/1472-6750-14-50

    Article  Google Scholar 

  70. Ghislain M, Byarugaba AA, Magembe E et al (2019) Stacking three late blight resistance genes from wild species directly into african highland potato varieties confers complete field resistance to local blight races. Plant Biotechnol J 17:1119–1129. https://doi.org/10.1111/pbi.13042

    Article  CAS  PubMed  Google Scholar 

  71. Webi E, Kariuki D, Kinyua J et al (2019) Extreme resistance to late blight disease by transferring 3 R genes from wild relatives into african farmer-preferred potato varieties. Afr J Biotechnol 18:845–856. https://doi.org/10.5897/AJB2019.16856

    Article  CAS  Google Scholar 

  72. Polzerová H, Patzak J, Greplová M (2011) Early characterization of somatic hybrids from symmetric protoplast electrofusion of Solanum pinnatisectum Dun. And Solanum tuberosum L. Plant Cell Tissue Organ Cult 104:163–170. https://doi.org/10.1007/s11240-010-9813-6

    Article  Google Scholar 

  73. Rakosy-Tican E, Thieme R, König J et al (2020) Introgression of two broad-spectrum late blight resistance genes, Rpi-Blb1 and Rpi-Blb3, from Solanum bulbocastanum Dun Plus race-specific R genes into Potato pre-breeding lines. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00699

  74. Chandel P, Tiwari JK, Ali N et al (2015) Interspecific potato somatic hybrids between Solanum tuberosum and S. cardiophyllum, potential sources of late blight resistance breeding. Plant Cell Tissue Organ Cult 123:579–589. https://doi.org/10.1007/s11240-015-0862-8

    Article  Google Scholar 

  75. Sanju S, Siddappa S, Thakur A et al (2015) Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Funct Integr Genomics 15:697–706. https://doi.org/10.1007/s10142-015-0446-z

    Article  CAS  PubMed  Google Scholar 

  76. Eschen-Lippold L, Lübken T, Smolka U, Rosahl S (2012) Characterization of potato plants with reduced StSYR1 expression. Plant Signal Behav 7:559–562. https://doi.org/10.4161/psb.19866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12. https://doi.org/10.1007/s11032-009-9323-6

    Article  PubMed  Google Scholar 

  78. Sun K, Wolters AMA, Loonen AEHM et al (2016) Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Transgenic Res 25:123–138. https://doi.org/10.1007/s11248-015-9921-5

    Article  CAS  PubMed  Google Scholar 

  79. Sun K, Wolters AMA, Vossen JH et al (2016) Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Res 25:731–742. https://doi.org/10.1007/s11248-016-9964-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. van den Hoogen J, Govers F (2018) Attempts to implement CRISPR/Cas9 for genome editing in the oomycete Phytophthora infestans. bioRxiv 274829. https://doi.org/10.1101/274829

  81. Ah-Fong AMV, Boyd AM, Matson MEH, Judelson HS (2021) A Cas12a-based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor. Mol Plant Pathol 22:737–752. https://doi.org/10.1111/mpp.13051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ghimire B, Saraiva M, Andersen CB et al (2022) Transformation systems, gene silencing and gene editing technologies in oomycetes. Fungal Biol Rev 40:37–52. https://doi.org/10.1016/j.fbr.2021.11.001

    Article  CAS  Google Scholar 

  83. Kieu NP, Lenman M, Wang ES et al (2021) Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci Rep 11:1–12. https://doi.org/10.1038/s41598-021-83972-w

    Article  CAS  Google Scholar 

  84. Zess EK, Dagdas YF, Peers E et al (2022) Regressive evolution of an effector following a host jump in the irish potato famine pathogen lineage. PLoS Pathog 18:1–34. https://doi.org/10.1371/journal.ppat.1010918

    Article  CAS  Google Scholar 

  85. Moon KB, Park SJ, Park JS et al (2022) Editing of StSR4 by Cas9-RNPs confers resistance to Phytophthora infestans in potato. Front Plant Sci 13:1–14. https://doi.org/10.3389/fpls.2022.997888

    Article  Google Scholar 

  86. Monino-Lopez D, Nijenhuis M, Kodde L et al (2021) Allelic variants of the NLR protein Rpi-chc1 differentially recognize members of the Phytophthora infestans PexRD12/31 effector superfamily through the leucine-rich repeat domain. Plant J 107:182–197. https://doi.org/10.1111/tpj.15284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin X, Olave-Achury A, Heal R et al (2022) A potato late blight resistance gene protects against multiple Phytophthora species by recognizing a broadly conserved RXLR-WY effector. Mol Plant 15:1457–1469. https://doi.org/10.1016/j.molp.2022.07.012

    Article  CAS  PubMed  Google Scholar 

  88. Pandey P, Leary AY, Tumtas Y et al (2021) An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. Elife 10:1–35. https://doi.org/10.7554/eLife.65285

    Article  Google Scholar 

  89. Qiao L, Lan C, Capriotti L et al (2021) Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol J 19:1756–1768. https://doi.org/10.1111/pbi.13589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, D.A and S.P.S; writing-original draft preparation, D.A. and S.P.S; writing-review and editing, D.A.; S.P.S. and A.K. visualization, S.P.S. and A.K., supervision, S.P.S; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Dechen Angmo.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angmo, D., Sharma, S.P. & Kalia, A. Breeding strategies for late blight resistance in potato crop: recent developments. Mol Biol Rep 50, 7879–7891 (2023). https://doi.org/10.1007/s11033-023-08577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08577-0

Keywords

Navigation