Log in

Editing of TOM1 gene in tobacco using CRISPR/Cas9 confers resistance to Tobacco mosaic virus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Genome editing technology has become one of the excellent tools for precise plant breeding to develop novel plant germplasm. The Tobacco mosaic virus (TMV) is the most prominent pathogen that infects several Solanaceae plants, such as tobacco, tomato, and capsicum, which requires critical host factors for infection and replication of its genomic RNA in the host. The Tobamovirus multiplication (TOM) genes, such as TOM1, TOM2A, TOM2B, and TOM3, are involved in the multiplication of Tobamoviruses. TOM1 is a transmembrane protein necessary for efficient TMV multiplication in several plant species. The TOM genes are crucial recessive resistance genes that act against the tobamoviruses in various plant species.

Methods and results

The single guided RNA (sgRNA) was designed to target the first exon of the NtTOM1 gene and cloned into the pHSE401 vector. The pHSE401-NtTOM1 vector was introduced into Agrobacterium tumefaciens strain LBA4404 and then transformed into tobacco plants. The analysis on T0 transgenic plants showed the presence of the hptII and Cas9 transgenes. The sequence analysis of the NtTOM1 from T0 plants showed the indels. Genotypic evaluation of the NtTOM1 mutant lines displayed the stable inheritance of the mutations in the subsequent generations of tobacco plants. The NtTOM1 mutant lines successfully conferred resistance to TMV.

Conclusions

CRISPR/Cas genome editing is a reliable tool for investigating gene function and precision breeding across different plant species, especially the species in the Solanaceae family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Jones RAC (2021) Global plant virus disease pandemics and epidemics. Plants 10:233. https://doi.org/10.3390/plants10020233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hull R (2014) Mathews’ Plant Virology, 5th ed.; Academic Press: London, UK, 2014

  3. Adams MJ, Adkins S, Bragard C, Gilmer D, Li D, MacFarlane SA, Wong SM, Melcher U, Ratti C, Ryu KH (2017) ICTV Virus taxonomy profile: Virgiviridae. J Gen Vir 98:1999–2000. https://doi.org/10.1099/jgv.0.000884

    Article  CAS  Google Scholar 

  4. ICTV Virus Taxonomy (2019) Release. Available online: https://talk.ictvonline.org/taxonomy/ (accessed on 9th Dec 2021)

  5. Luria N, Smith E, Reingold V, Bekelman I, Lapidot M, Levin I, Elad N, Tam Y, Sela N, Abu-Ras A, Ezra N (2017) A new israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS ONE 12(1):e0170429

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dorokhov YL, Sheshukova EV, Komarova TV (2017) Tobamovirus 3′-terminal gene overlap may be a mechanism for within-host fitness improvement. Front Microbiol 8:851. https://doi.org/10.3389/fmicb.2017.00851

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hashimoto M, Neriya Y, Yamaji Y, Namba S (2016) Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front Microbiol 7:1695

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yamanaka T, Ohta T, Takahashi M, Meshi T, Schmidt R, Dean C, Naito S, Ishikawa M (2000) TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc Natl Acad Sci USA 97:10107–10112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsujimoto Y, Numaga T, Ohshima K, Yano MA, Ohsawa R, Goto DB, Naito S, Ishikawa M (2003) Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J 22(2):335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nishikiori M, Mori M, Dohi K, Okamura H, Katoh E, Naito S, Meshi T, Ishikawa M (2011) A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication. PLoS Path 7(12):e1002409

    Article  CAS  Google Scholar 

  11. Hancinsky R, Mihalik D, Mrkvova M, Candresse T, Glasa M (2020) Plant viruses infecting Solanaceae family members in the cultivated and wild environments: a review. Plants 9:667. https://doi.org/10.3390/plants9050667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hagiwara Y, Komoda K, Yamanaka T, Tamai A, Meshi T, Funada R, Tsuchiya T, Naito S, Ishikawa M (2003) Subcellular localization of host and viral proteins associated with tobamovirus RNA replication. EMBO J 22(2):344–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen B, Jiang JH, Zhou XP (2007) A TOM1 homologue is required for multiplication of Tobacco mosaic virus in Nicotiana benthamiana. J Zhejiang Univ Sci B 8(4):256–259. https://doi.org/10.1631/jzus.2007.B0256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao Y, Yang X, Zhou G, Zhang T (2020) Engineering plant virus resistance: from RNA silencing to genome editing strategies. Plant Biotech J 18:328–336

    Article  CAS  Google Scholar 

  15. Yoon Y-J, Venkatesh J, Lee J-H, Kim J, Lee H-E, Kim D-S, Kang B-C (2020) Genome editing of eIF4E1 in tomato confers resistance to Pepper Mottle Virus. Front Plant Sci 11:1098. https://doi.org/10.3389/fpls.2020.01098

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hagiwara KY, Hirai K, Mochizuki A, Nishiguchi M, Meshi T, Ishikawa M (2008) Overexpression of a host factor TOM1 inhibits tomato mosaic virus propagation and suppression of RNA silencing. Virology 376(1):132–139

    Article  Google Scholar 

  17. Kumar S, Dubey AK, Karmakar R, Kini KR, Mathew MK, Prakash HS (2012) Inhibition of TMV multiplication by siRNA constructs against TOM1 and TOM3 genes of Capsicum annuum. J Virol Meth 186(1–2):78–85

    Article  CAS  Google Scholar 

  18. Ahmad S, Wei X, Sheng Z, Hu P, Tang S (2020) CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Brief Functl Genom 19(1):26–39. https://doi.org/10.1093/bfgp/elz041

    Article  CAS  Google Scholar 

  19. Rato C, Carvalho MF, Azevedo C, Oblessuc PR (2021) Genome editing for resistance against plant pests and pathogens. Trans Res 30:427–459

    Article  CAS  Google Scholar 

  20. Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17:1276–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology. Mole Plant Path 17(7):1140–1153

    Article  CAS  Google Scholar 

  22. Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Cermak T, Voytas DF, Choi IR, Chadha‐Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9‐targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotech J 16(11):1918–1927. https://doi.org/10.1111/pbi.12927

    Article  CAS  Google Scholar 

  23. Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington JC, Staskawicz BJ, Bart RS (2019) Simultaneous CRISPR/Cas9-mediated editing of cassava eIF 4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotech J 17:421–434. https://doi.org/10.1111/pbi.12987

    Article  CAS  Google Scholar 

  24. Tripathi JN, Ntui VO, Ron M et al (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol 2:46. https://doi.org/10.1038/s42003-019-0288-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Atarashi H, Jayasinghe WH, Kwon J, Kim H, Taninaka Y, Igarashi M, Ito K, Yamada T, Masuta C, Nakahara KS (2020) Artificially edited alleles of the eukaryotic translation initiation factor 4E1 gene differentially reduce susceptibility to Cucumber mosaic virus and Potato virus Y in tomato. Front Microbiol 11:3075

    Article  Google Scholar 

  26. Pramanik D, Shelake RM, Park J, Kim MJ, Hwang I, Park Y, Kim JY (2021) CRISPR/Cas9-mediated generation of pathogen-resistant tomato against tomato yellow leaf curl virus and powdery mildew. Inter J Mol Sci 22(4):1878

    Article  CAS  Google Scholar 

  27. Kumar S, Abebie B, Kumari R, Kravchik M, Shnaider Y, Leibman D, Bornstein M, Gaba V, Gal–On A (2022) Development of PVY resistance in tomato by knockout of host eukaryotic initiation factors by CRISPR–Cas9. Phytoparasitica 50:743–756

    Article  CAS  Google Scholar 

  28. Lucioli A, Tavazza R, Baima S, Fatyol K, Burgyan J, Tavazza M (2022) CRISPR-Cas9 targeting of the eIF4E1 gene extends the Potato Virus Y resistance spectrum of the Solanum tuberosum L. cv. Desiree Front Microbiol 13:873930. https://doi.org/10.3389/fmicb.2022.873930

    Article  PubMed  Google Scholar 

  29. Kuroiwa K, Thenault C, Nogue F, Perrot L, Mazier M, Gallois JL (2022) CRISPR-based knock-out of eIF4E2 in a cherry tomato background successfully recapitulates resistance to pepper veinal mottle virus. Plant Sci 316:111160

    Article  CAS  PubMed  Google Scholar 

  30. **ng HL, Dong L. Wang ZP, Zhang HY, Han CY, Liu B, … Chen QJA (2014) CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology 14(1):1–12

  31. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12(13):39–40

    Google Scholar 

  32. Hooghvorst I, Lopez-Cristoffanini C, Nogues S (2019) Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon. Sci Rep 9(1):1–7

    Article  CAS  Google Scholar 

  33. Yamanaka T, Imai T, Satoh R, Kawashima A, Takahashi M, Tomita K, Kubota K, Meshi T, Naito S, Ishikawa M (2002) Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J Virol 76(5):2491–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ali ME, Ishii Y, Taniguchi JI, Waliullah S, Kobayashi K, Yaeno T, … Nishiguchi M (2018)Conferring virus resistance in tomato by independent RNA silencing of three tomato homologs of Arabidopsis TOM1. Arch. Virology 163(5):1357–1362

  35. Cao Y, Zhou H, Zhou X, Li F (2020) Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity. Front Microbiol 11:593700. https://doi.org/10.3389/fmicb.2020.593700

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gal-On A, Fuchs M, Gray S (2017) Generation of novel resistance genes using mutation and targeted gene editing. Curr Opin Virol 26:98–103

    Article  CAS  PubMed  Google Scholar 

  37. Zhang DQ, Unver T, Zhang BH (2021) CRISPR/Cas: a powerful tool for gene function study and crop improvement. J Adv Res 29:207–221

    Article  CAS  PubMed  Google Scholar 

  38. Li C, Unver T, Zhang BH (2017) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton (Gossypium hirsutum L). Sci Rep 7:43902

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alok A, Chauhan H, Kaushal N, Singh K (2022) Rapid and efficient CRISPR/Cas9-mediated genome editing in potato via hairy root induction. In Vitro Cellular & Developmental Biology-Plant.1–12

  40. Robertson G, Burger J, Campa M (2022) CRISPR/Cas-based tools for the targeted control of plant viruses. Mol Plant Pathol 23:1701–1718. https://doi.org/10.1111/mpp.13252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ariga H, Toki S, Ishibashi K (2020) Potato virus X vector-mediated DNA-free genome editing in plants. Plant Cell Physiol 61(11):1946–1953. https://doi.org/10.1093/pcp/pcaa123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van de Vossenberg BTLH, Dawood T, Wozny M, Botermans M (2021) First expansion of the Public Tomato Brown Rugose Fruit Virus (ToBRFV) Nextstrain Build; inclusion of new genomic and epidemiological data. PhytoFrontiers 1:359–363

  43. Ishikawa M, Yoshida T, Matsuyama M, Kouzai Y, Kano A, Ishibashi K (2022) Tomato brown rugose fruit virus resistance generated by quadruple knockout of homologs of TOBAMOVIRUS MULTIPLICATION1 in tomato. Plant Physiol 189:679–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kravchik M, Shnaider Y, Abebie B, Shtarkman M, Kumari R, Kumar S, Leibman D, Spiegelman Z, Gal-On A (2022) Knockout of SlTOM1 and SlTOM3 results in differential resistance to tobamovirus in tomato. Mol Plant Pathol 23:1278–1289. https://doi.org/10.1111/mpp.13227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

PJ and VRA are grateful to the University Grant Commission, New Delhi, for the financial assistance under the SAP-DRS-II program (No. F-5-24/2015/DRS-II). DS is thankful to the Department of Science and Technology, Government of India, for providing Inspire Fellowship (No. IF160264). SA is grateful to the Council of Scientific & Industrial Research, Government of India, for giving CSIR-Emeritus Scientist (No. 21(1067)/19/EMR-II).

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

PJ performed experiments and wrote the manuscript. DS helped while conducting experiments and data analysis. AA helped in bioinformatics, construct, and manuscript preparation. VP and SPS data curation and revision of the manuscript. SA experimental suggestions and critical revision of the manuscript, BZ and VRA conceived the idea, designed the experiments, and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Baohong Zhang or Venkateswar Rao Allini.

Ethics declarations

Institutional Review Board Statement

Not applicable.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Consent for publication

The authors agree to publication in the Journal.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jogam, P., Sandhya, D., Alok, A. et al. Editing of TOM1 gene in tobacco using CRISPR/Cas9 confers resistance to Tobacco mosaic virus. Mol Biol Rep 50, 5165–5176 (2023). https://doi.org/10.1007/s11033-023-08440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08440-2

Keywords

Navigation