Log in

Characterization and expression analysis of basic leucine zipper (bZIP) transcription factors responsive to chilling injury in peach fruit

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Peach (Prunus persica L.) is prone to chilling injury as exhibited by inhibition of the ethylene production, failure in softening, and the manifestation of internal browning. The basic leucine zipper (bZIP) transcription factors play an essential role in regulatory networks that control many processes associated with physiological, abiotic and biotic stress responses in fruits. Formerly, the underlying molecular and regulatory mechanism of (bZIP) transcription factors responsive to chilling injury in peach fruit is still elusive.

Methods and results

In the current experiment, the solute peach ‘Zhongyou Peach No. 13’ was used as the test material and cold storage at low temperature (4 °C). It was found that long-term low-temperature storage induced the production of ethylene, the hardness of the pulp decreased, and the low temperature also induced ABA accumulation. The changes of ABA and ethylene in peach fruits during low-temperature storage were clarified. Since the bZIP transcription factor is involved in the regulation of downstream pathways of ABA signals, 47 peach bZIP transcription factor family genes were identified through bioinformatics analysis. Further based on RT-qPCR analysis, 18 PpbZIP genes were discovered to be expressed in refrigerated peach fruits. Among them, the expression of PpbZIP23 and PpbZIP25 was significantly reduced during the refrigeration process, the promoter analysis of these genes found that this region contains the MYC/MYB/ABRES binding element, but not the DRES/CBFS element, indicating that the expression may be regulated by the ABA-dependent cold induction pathway, thereby responding to chilling injury in peach fruit.

Conclusions

Over investigation will provide new insights for further postharvest protocols related to molecular changes during cold storage and will prove a better cope for chilling injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All supporting data is available within the text and supplementary files. Further queries can be directed to corresponding author.

References

  1. Wang K, Yin XR, Zhang B, Grierson D, Xu CJ, Chen KS (2017) Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit. Plant Cell Environ 40(8):1531–1551

    Article  CAS  Google Scholar 

  2. Wang L, Shan T, **e B, Ling C, Shao S, ** P, Zheng Y (2019) Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chem 272:530–538

    Article  CAS  Google Scholar 

  3. Lurie S, Crisosto CH (2005) Chilling injury in peach and nectarine. Postharvest Biol Technol 37(3):195–208

    Article  Google Scholar 

  4. Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82(2):193–207

    Article  CAS  Google Scholar 

  5. Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10(3):290–295

    Article  CAS  Google Scholar 

  6. Gao SQ, Chen M, Xu ZS, Zhao CP, Li L, Xu HJ, Tang YM, Zhao X, Ma YZ (2011) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75(6):537–553

    Article  CAS  Google Scholar 

  7. Kim JB, Kang JY, Kim SY (2004) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2(5):459–466

    Article  CAS  Google Scholar 

  8. Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228(2):225–240

    Article  CAS  Google Scholar 

  9. Zhang Y, Raza A, Huang H, Su W, Luo D, Zeng L, Ding X, Cheng Y, Liu Z, Li Q (2022) Analysis of Lhcb gene family in rapeseed (Brassica napus L.) identifies a novel member “BnLhcb3. 4” modulating cold tolerance. Environ Exp Bot 198:104848

    Article  CAS  Google Scholar 

  10. Raza A, Tabassum J, Kudapa H, Varshney RK (2021) Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 41(8):1209–1232

    Article  Google Scholar 

  11. Wang Z, Wang Y, Li A, Miao Y, Deng L, Wang H, Meng J, Liu H, Niu L, Pan L (2022) Transcriptome, lipidome, and phytohormone analyses elucidate the mechanism of chilling injury during postharvest cold storage in different cold-sensitive peach fruit. Available at SSRN 4085272

  12. Sharif R, Raza A, Chen P, Li Y, El-Ballat EM, Rauf A, Hano C, El-Esawi MA (2021) HD-ZIP gene family: potential roles in improving plant growth and regulating stress-responsive mechanisms in plants. Genes 12(8):1256

    Article  CAS  Google Scholar 

  13. Zahra N, Shaukat K, Hafeez MB, Raza A, Hussain S, Chaudhary MT, Akram MZ, Kakavand SN, Saddiq MS, Wahid A (2021) Physiological and molecular responses to high, chilling, and freezing temperature in plant growth and production consequences and mitigation possibilities. Harsh Environment and Plant Resilience. Springer, Cham, pp 235–290

    Chapter  Google Scholar 

  14. Pérez-Rodríguez P, Riano-Pachon DM, Corrêa LGG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38(suppl_1):D822–D827

    Article  Google Scholar 

  15. Talanian RV, McKnight CJ, Kim PS (1990) Sequence-specific DNA binding by a short peptide dimer. Science 249(4970):769–771

    Article  CAS  Google Scholar 

  16. Hurst HC (1995) Transcription factors 1: bZIP proteins. Protein Profile 2(2):101–168

    CAS  Google Scholar 

  17. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111

    Article  CAS  Google Scholar 

  18. Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146(2):333–350

    Article  CAS  Google Scholar 

  19. Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY (2011) Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on Sorghum F. J Integr Plant Biol 53(3):212–231

    Article  CAS  Google Scholar 

  20. Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, **e D (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19(6):463–476

    Article  CAS  Google Scholar 

  21. ** Z, Xu W, Liu A (2014) Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.). Planta 239(2):299–312

    Article  CAS  Google Scholar 

  22. Baloglu MC, Eldem V, Hajyzadeh M, Unver T (2014) Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS ONE 9(4):e96014

    Article  Google Scholar 

  23. Gao M, Zhang H, Guo C, Cheng C, Guo R, Mao L, Fei Z, Wang X (2014) Evolutionary and expression analyses of basic zipper transcription factors in the highly homozygous model grape PN40024 (Vitis vinifera L.). Plant Mol Biol Report 32(5):1085–1102

    Article  CAS  Google Scholar 

  24. Wang XL, Chen X, Yang TB, Cheng Q, Cheng ZM (2017) Genome-wide identification of bZIP family genes involved in drought and heat stresses in strawberry (Fragaria vesca L). Int J Genom. https://doi.org/10.1155/2017/3981031

    Article  Google Scholar 

  25. Zhao J, Guo R, Guo C, Hou H, Wang X, Gao H (2016) Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family. Front Plant Sci 7:376

    Article  Google Scholar 

  26. Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schütze K, Alonso R, Harter K, Vicente-Carbajosa J, Dröge-Laser W (2006) Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J 25(13):3133–3143

    Article  CAS  Google Scholar 

  27. **ang Y, Tang N, Du H, Ye H, **ong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938–1952

    Article  CAS  Google Scholar 

  28. Ying S, Zhang D-F, Fu J, Shi Y-S, Song Y-C, Wang T-Y, Li Y (2012) Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235(2):253–266

    Article  CAS  Google Scholar 

  29. Liu C, Wu Y, Wang X (2012) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235(6):1157–1169

    Article  CAS  Google Scholar 

  30. Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R, Kusano T (2005) LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant Cell Physiol 46(10):1623–1634

    Article  CAS  Google Scholar 

  31. Nieva C, Busk PK, Domínguez-Puigjaner E, Lumbreras V, Testillano PS, Risueño MC, Pagès M (2005) Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol Biol 58(6):899–914

    Article  CAS  Google Scholar 

  32. Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, Gatz C (2005) Tobacco bZIP transcription factor TGA2. 2 and related factor TGA2. 1 have distinct roles in plant defense responses and plant development. Plant J 44(1):100–113

    Article  CAS  Google Scholar 

  33. Ulm R, Baumann A, Oravecz A, Máté Z, Ádám É, Oakeley EJ, Schäfer E, Nagy F (2004) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci U S A 101(5):1397–1402

    Article  CAS  Google Scholar 

  34. Silveira AB, Gauer L, Tomaz JP, Cardoso PR, Carmello-Guerreiro S, Vincentz M (2007) The Arabidopsis AtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development. Plant Sci 172(6):1148–1156

    Article  CAS  Google Scholar 

  35. Yin Y, Zhu Q, Dai S, Lamb C, Beachy RN (1997) RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J 16(17):5247–5259

    Article  CAS  Google Scholar 

  36. Guan Y, Ren H, **e H, Ma Z, Chen F (2009) Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J 60(2):207–217

    Article  CAS  Google Scholar 

  37. Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66(6):675–683

    Article  CAS  Google Scholar 

  38. Zeng W, Tan B, Deng L, Wang Y, Aslam MM, Wang X, Qiao C, Wang Z, Feng J (2020) Identification and expression analysis of abscisic acid signal transduction genes during peach fruit ripening. Sci Hortic 270:109402

    Article  CAS  Google Scholar 

  39. Wang X, Zeng W, Ding Y, Wang Y, Niu L, Yao J-L, Pan L, Lu Z, Cui G, Li G (2019) PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach. Hortic Res. https://doi.org/10.1038/s41438-018-0094-2

    Article  Google Scholar 

  40. Aslam MM, Deng L, Wang X, Wang Y, Pan L, Liu H, Niu L, Lu Z, Cui G, Zeng W (2019) Expression patterns of genes involved in sugar metabolism and accumulation during peach fruit development and ripening. Sci Hortic 257:108633

    Article  CAS  Google Scholar 

  41. Zhang C, Shangguan L, Ma R, Sun X, Tao R, Guo L, Korir N, Yu M (2012) Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica L). Genet Mol Res 11(4):4789–4809

    CAS  Google Scholar 

  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  43. Tatsuki M, Nakajima N, Fujii H, Shimada T, Nakano M, Hayashi KI, Hayama H, Yoshioka H, Nakamura Y (2013) Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). J Exp Bot 64(4):1049–1059

    Article  CAS  Google Scholar 

  44. McGlasson W, Scott KJ, Mendoza D Jr (1979) The refrigerated storage of tropical and subtropical products. Int J Refrig 2(6):199–206

    Article  Google Scholar 

  45. Hardeburg RE (1986) The commercial storage of fruits, vegetables, and florist and nursery stocks. USDA Agriculture Handbook, vol 66, pp 11–12

  46. Lallu N (1995) Low temperature breakdown in kiwifruit. In: III International Symposium on Kiwifruit (444): pp 579–586

  47. Mworia EG, Yoshikawa T, Salikon N, Oda C, Fukuda T, Suezawa K, Asiche WO, Ushijima K, Nakano R, Kubo Y (2011) Effect of MA storage and 1-MCP on storability and quality of ‘Sanuki Gold’ kiwifruit harvested at two different maturity stages. J Jpn Soc Hortic Sci 80(3):372–377

    Article  CAS  Google Scholar 

  48. Koukounaras A, Sfakiotakis E (2007) Effect of 1-MCP prestorage treatment on ethylene and CO2 production and quality of ‘Hayward’kiwifruit during shelf-life after short, medium and long term cold storage. Postharvest Biol Technol 46(2):174–180

    Article  CAS  Google Scholar 

  49. ** P, Wang K, Shang H, Tong J, Zheng Y (2009) Low-temperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit. J Sci Food Agric 89(10):1690–1696

    Article  CAS  Google Scholar 

  50. Ritenour MA, Crisosto CH, Garner DT, Cheng GW, Zoffoli JP (1999) Temperature, length of cold storage and maturity influence the ripening rate of ethylene-preconditioned kiwifruit. Postharvest Biol Technol 15(2):107–115

    Article  Google Scholar 

  51. Tijero V, Teribia N, Muñoz P, Munné-Bosch S (2016) Implication of abscisic acid on ripening and quality in sweet cherries: differential effects during pre-and post-harvest. Front Plant Sci 7:602

    Article  Google Scholar 

  52. Li P, Dai S, Zhao B, Zhang Y, Liao K, Xu F, Du C, Leng P (2014) Effect of low temperatures on pulp browning and endogenous abscisic acid and ethylene concentrations in peach (Prunus persica L.) fruit during post-harvest storage. J Hortic Sci Biotechnol 89(6):686–692

    Article  CAS  Google Scholar 

  53. Yang Q, Zhang Z, Rao J, Wang Y, Sun Z, Ma Q, Dong X (2013) Low-temperature conditioning induces chilling tolerance in ‘Hayward’ kiwifruit by enhancing antioxidant enzyme activity and regulating en-dogenous hormones levels. J Sci Food Agric 93(15):3691–3699

    Article  CAS  Google Scholar 

  54. Alves MS, Dadalto SP, Gonçalves AB, De Souza GB, Barros VA, Fietto LG (2013) Plant bZIP transcription factors responsive to pathogens: a review. Int J Mol Sci 14(4):7815–7828

    Article  Google Scholar 

  55. Sornaraj P, Luang S, Lopato S, Hrmova M (2016) Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: a molecular model of a wheat bZIP factor and implications of its structure in function. Biochim Biophys Acta (BBA)-General Subj 1860(1):46–56

    Article  CAS  Google Scholar 

  56. Liu X, Chu Z (2015) Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon. BMC Genom 16(1):227

    Article  Google Scholar 

  57. Liu J, Chen N, Chen F, Cai B, Dal Santo S, Tornielli GB, Pezzotti M, Cheng ZMM (2014) Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera L). BMC Genom 15(1):281

    Article  Google Scholar 

  58. Hu W, Zuo J, Hou X, Yan Y, Wei Y, Liu J, Li M, Xu B, ** Z (2015) The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Front Plant Sci 6:742

    Article  Google Scholar 

  59. Sevillano L, Sanchez-Ballesta MT, Romojaro F, Flores FB (2009) Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. J Sci Food Agric 89(4):555–573

    Article  CAS  Google Scholar 

  60. Brummell DA, Dal Cin V, Crisosto CH, Labavitch JM (2004) Cell wall metabolism during maturation, ripening and senescence of peach fruit. J Exp Bot 55(405):2029–2039

    Article  CAS  Google Scholar 

  61. Hsieh TH, Li CW, Ruey-Chih S, Cheng CP (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231(6):1459–1473

    Article  CAS  Google Scholar 

  62. Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144(1):336–346

    Article  CAS  Google Scholar 

  63. Liu C, Ou S, Mao B, Tang J, Wang W, Wang H, Cao S, Schläppi MR, Zhao B, **ao G (2018) Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat Commun 9(1):1–12

    Google Scholar 

  64. Zhang T, Zhao X, Wang W, Pan Y, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B (2012) Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS ONE 7(8):e43274

    Article  CAS  Google Scholar 

  65. Yun K-Y, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, delosReyes BG (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10(1):16

    Article  Google Scholar 

  66. Chen D, Xu G, Tang W, **g Y, Ji Q, Fei Z, Lin R (2013) Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25(5):1657–1673

    Article  CAS  Google Scholar 

  67. Wang F, Wu N, Zhang L, Ahammed GJ, Chen X, **ang X, Zhou J, **a X, Shi K, Yu J (2018) Light signaling-dependent regulation of photoinhibition and photoprotection in tomato. Plant Physiol 176(2):1311–1326

    Article  CAS  Google Scholar 

  68. An JP, Yao JF, Wang XN, You CX, Wang XF, Hao YJ (2017) MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple. J Plant Physiol 218:275–281

    Article  CAS  Google Scholar 

  69. Soltész A, Smedley M, Vashegyi I, Galiba G, Harwood W, Vágújfalvi A (2013) Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. J Exp Bot 64(7):1849–1862

    Article  Google Scholar 

  70. Wisniewski M, Norelli J, Artlip T (2015) Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. Front Plant Sci 6:85

    Article  Google Scholar 

  71. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95

    Article  CAS  Google Scholar 

  72. **ong L, Ishitani M, Zhu J-K (1999) Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol 119(1):205–212

    Article  CAS  Google Scholar 

  73. Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229(3):605–615

    Article  CAS  Google Scholar 

  74. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17(12):3470–3488

    Article  CAS  Google Scholar 

  75. Casaretto J, Ho TH (2003) The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15(1):271–284

    Article  CAS  Google Scholar 

  76. Kobayashi F, Maeta E, Terashima A, Takumi S (2008) Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134(1):74–86

    Article  CAS  Google Scholar 

  77. **ao-Li S, Li Y, Hua C, ** B, Wei J, Zuo-Jun J, Yan-Ming Z (2011) Arabidopsis bZIP1 transcription factor binding to ABRE cis-element regulates abscisic acid signal transduction. Acta Agron Sin 37(4):612–619

    Google Scholar 

  78. Choi H-i, Hong J-h, Ha J-o, Kang J-y, Kim SY (2000) A family of ABA-responsive element binding factors. J Biol Chem 275(3):1723–1730

    Article  CAS  Google Scholar 

  79. Yao L, Hao X, Cao H, Ding C, Yang Y, Wang L, Wang X (2020) ABA-dependent bZIP transcription factor, CsbZIP18, from Camellia sinensis negatively regulates freezing tolerance in Arabidopsis. Plant Cell Rep 39(4):553–565

    Article  CAS  Google Scholar 

  80. Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25(3):247–259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [No. 31872085], the National Key Research and Development Program [2018YFD1000200], and the Agricultural Science and Technology Innovation Program (ASTIP) [CAAS-ASTIP-2019-ZFRI]. Authors are highly grateful for providing financial assistance for this research.

Funding

This work was supported by the National Natural Science Foundation of China [No. 31872085], the National Key Research and Development Program [2018YFD1000200], and the Agricultural Science and Technology Innovation Program (ASTIP) [CAAS-ASTIP-2019-ZFRI].

Author information

Authors and Affiliations

Authors

Contributions

WZ conceived this project and designed all the experiment. MMA, LD, YW performed the experiments. JM analyzed data. ZW supervised the experiments MMA and WZ wrote the article, LP, LN, ZL and GC help to revise the manuscript.

Corresponding authors

Correspondence to Wenfang Zeng or Zhiqiang Wang.

Ethics declarations

Conflict of interest

We declare that none of the work contained in this manuscript is published in any language or current under consideration at any other journal; there is no conflict of interest to declare. All authors have contributed to, read, and approved this submitted manuscript in its current form.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 739 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M.M., Deng, L., Meng, J. et al. Characterization and expression analysis of basic leucine zipper (bZIP) transcription factors responsive to chilling injury in peach fruit. Mol Biol Rep 50, 361–376 (2023). https://doi.org/10.1007/s11033-022-08035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08035-3

Keywords

Navigation