Log in

Insulin-producing cell clusters derived from human gingival mesenchymal stem cells as a model for diabetes research

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The human gingiva-derived mesenchymal stem cells (hGMSCs) possess a great potential to develop the cell-based therapy for diabetes due to its unscarred healing capacity and reparative potential. In this current study, we isolated, cultured and characterised the GMSCs and explored their potential to differentiate into Insulin Producing Cell Clusters (IPCCs).

Methods

The cells derived from gingival tissues exhibited fibroblast-like morphology. The flow cytometric analysis revealed positive expression of CD73(97.43%), CD90(95.05%), and CD105(93.17%) and negative expression of CD34(0.05%), CD45(0.09%), and HLA-DR (0.025) surface markers. We then converted this adherent fibroblast-like GMSCs into floating IPCCs using a sequential three-step protocol containing a different combination of differentiating agents. Initially, the presence of insulin in IPCCs was confirmed by dithizone staining. Glucose-stimulated insulin secretion (GSIS) assay confirmed that IPCCs secrete insulin in response to glucose.

Results

Generated IPCCs express pancreatic markers such as insulin, pdx1, glucagon, GLUT4 and GLUT2 as evidenced by RT-PCR analysis. Our results unequivocally showed that IPCCs can be generated from gingiva which is a potential source of postnatal MSCs. Our results offer the IPCCs generated from hGMSCs a platform for screening anti-diabetic drugs and a new autologous source of tissue for islet transplantation for the treatment of diabetes.

Conclusions

Our results unequivocally demonstrate for the first time that hGMSCs can be used as an attractive non-invasive tissue source for generating IPCCs, which can be employed in diabetes research for screening antidiabetic agents and also for transplantation in type 1 diabetic patients as autologous source without the need of immunosuppression.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IPCCs:

Insulin producing cell clusters

DM:

Diabetes mellitus

SFM:

Serum free medium

References

  1. Tabish SA (2007) Is diabetes becoming the biggest epidemic of the twenty-first century? Int J Health Sci (Qassim) 1:5–8

    Google Scholar 

  2. Meloche RM (2007) Transplantation for the treatment of type 1 diabetes. World J Gastroenterol 13:6347–6355. https://doi.org/10.3748/wjg.v13.i47.6347

    Article  PubMed  PubMed Central  Google Scholar 

  3. Solis MA, Moreno Velásquez I, Correa R, Huang LLH (2019) Stem cells as a potential therapy for diabetes mellitus: a call-to-action in Latin America. Diabetol Metab Syndr 11:1–13. https://doi.org/10.1186/s13098-019-0415-0

    Article  Google Scholar 

  4. Patil VR, Kharat AH, Kulkarni DG et al (2018) Long term explant culture for harvesting homogeneous population of human dental pulp stem cells. Cell Biol Int 42:1602–1610. https://doi.org/10.1002/cbin.11065

    Article  CAS  PubMed  Google Scholar 

  5. Debeljak-Martacic J, Francuski J, Luzajic T et al (2014) Characterization of deciduous teeth stem cells isolated from crown dental pulp. Vojnosanit Pregl 71:735–741. https://doi.org/10.2298/VSP1408735D

    Article  Google Scholar 

  6. Abedian Z, Jenabian N, Moghadamnia AA et al (2020) A comparative study on immunophenotypic characterization and osteogenic differentiation of human mesenchymal stromal cells derived from periodontal ligament and gingiva. J Periodontol. https://doi.org/10.1002/jper.19-0535

    Article  PubMed  Google Scholar 

  7. Yu S, Li J, Zhao Y et al (2020) Comparative secretome analysis of mesenchymal stem cells from dental apical papilla and bone marrow during early odonto/osteogenic differentiation: potential role of transforming growth factor-β 2. Front Physiol 11:1–14. https://doi.org/10.3389/fphys.2020.00041

    Article  CAS  Google Scholar 

  8. Zhou T, Pan J, Wu P et al (2019) Dental follicle cells: roles in development and beyond. Stem Cells Int. https://doi.org/10.1155/2019/9159605

    Article  PubMed  PubMed Central  Google Scholar 

  9. Venkatesh D, Kumar KPM, Alur JB (2020) Gingival mesenchymal stem cells. J Oral Maxillofac Pathol 21:296–298. https://doi.org/10.4103/jomfp.JOMFP

    Article  Google Scholar 

  10. Zheng C, Chen J, Liu S, ** Y (2019) Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci. https://doi.org/10.1038/s41368-019-0060-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Somani R, Jaidka S, Bajaj N, Arora S (2017) Miracle cells for natural dentistry—a review. J Oral Biol Craniofacial Res 7:49–53. https://doi.org/10.1016/j.jobcr.2015.11.007

    Article  Google Scholar 

  12. Sun Q, Nakata H, Yamamoto M et al (2019) Comparison of gingiva-derived and bone marrow mesenchymal stem cells for osteogenesis. J Cell Mol Med 23:7592–7601. https://doi.org/10.1111/jcmm.14632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang W, Zhou L, Dang J et al (2017) Human gingiva-derived mesenchymal stem cells ameliorate streptozoticin-induced T1DM in mice via suppression of T effector cells and up-regulating treg subsets. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-14979-5

    Article  CAS  Google Scholar 

  14. Govindasamy V, Ronald VS, Abdullah AN et al (2011) Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 90:646–652. https://doi.org/10.1177/0022034510396879

    Article  CAS  PubMed  Google Scholar 

  15. Bhonde RR (2011) Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 90:646–652. https://doi.org/10.1177/0022034510396879

    Article  CAS  PubMed  Google Scholar 

  16. Chandravanshi B, Bhonde RR (2017) Shielding engineered islets with mesenchymal stem cells enhance survival under hypoxia. J Cell Biochem 118:2672–2683. https://doi.org/10.1002/jcb.25885

    Article  CAS  PubMed  Google Scholar 

  17. Journal AI, Lan K, Wang C et al (2018) Islet-like clusters derived from skeletal muscle-derived stem/progenitor cells for autologous transplantation to control type 1 diabetes in mice. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2018.1492421

    Article  Google Scholar 

  18. Kadam S, Muthyala S, Nair P, Bhonde R (2010) Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as novel sources for stem cell therapy in diabetes. Rev Diabet Stud 7:168–182. https://doi.org/10.1900/RDS.2010.7.168

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kharat A, Chandravanshi B, Gadre S et al (2019) IGF-1 and somatocrinin trigger islet differentiation in human amniotic membrane derived mesenchymal stem cells. Life Sci 216:287–294. https://doi.org/10.1016/j.lfs.2018.11.028

    Article  CAS  PubMed  Google Scholar 

  20. Mitrano TI, Grob MS, Carrión F et al (2010) Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol 81:917–925. https://doi.org/10.1902/jop.2010.090566

    Article  PubMed  Google Scholar 

  21. Zhang W, Zhou L, Dang J et al (2017) Human gingiva-derived mesenchymal stem cells ameliorate streptozoticin-induced T1DM in mice via suppression of T effector cells and up-regulating treg subsets. Sci Rep. https://doi.org/10.1038/s41598-017-14979-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang QZ, Nguyen AL, Yu WH, Le AD (2012) Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells. J Dent Res 91:1011–1018. https://doi.org/10.1177/0022034512461016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomar GB, Srivastava RK, Gupta N et al (2010) Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun 393:377–383. https://doi.org/10.1016/j.bbrc.2010.01.126

    Article  CAS  PubMed  Google Scholar 

  24. Diomede F, D’Aurora M, Gugliandolo A et al (2018) Biofunctionalized scaffold in bone tissue repair. Int J Mol Sci 19:1–17. https://doi.org/10.3390/ijms19041022

    Article  CAS  Google Scholar 

  25. Mansour RN, Soleimanifar F, Abazari MF et al (2018) Collagen coated electrospun polyethersulfon nanofibers improved insulin producing cells differentiation potential of human induced pluripotent stem cells. Artif Cells Nanomed Biotechnol 46:S734–S739. https://doi.org/10.1080/21691401.2018.1508031

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Xu SQ, Zhang K et al (2018) Treatment of gingival defects with gingival mesenchymal stem cells derived from human fetal gingival tissue in a rat model. Stem Cell Res Ther 9:1–8. https://doi.org/10.1186/s13287-017-0751-7

    Article  CAS  Google Scholar 

  27. Pizzicannella J, Diomede F, Gugliandolo A et al (2019) 3D printing PLA/gingival stem cells/EVs upregulate miR-2861 and-210 during osteoangiogenesis commitment. Int J Mol Sci. https://doi.org/10.3390/ijms20133256

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang Q, Shi S, Liu Y et al (2010) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 184:1656–1656. https://doi.org/10.4049/jimmunol.0990118

    Article  CAS  Google Scholar 

  29. Sun W, Wang Z, Xu Q et al (2019) The treatment of systematically transplanted gingival mesenchymal stem cells in periodontitis in mice. Exp Ther Med. https://doi.org/10.3892/etm.2019.7165

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rafiee F, Pourteymourfard-tabrizi Z, Mehri-ghahfarrokhi A et al (2019) Differentiation of dental pulp stem cells into neuron-like cells. Int J Neurosci. https://doi.org/10.1080/00207454.2019.1664518

    Article  PubMed  Google Scholar 

  31. Loo ZX, Kunasekaran W, Govindasamy V et al (2014) Comparative analysis of cardiovascular development related genes in stem cells isolated from deciduous pulp and adipose tissue. Sci World J. https://doi.org/10.1155/2014/186508

    Article  Google Scholar 

  32. Couble ML, Farges JC, Bleicher F et al (2000) Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int 66:129–138. https://doi.org/10.1007/PL00005833

    Article  CAS  PubMed  Google Scholar 

  33. Samsonraj RM et al (2015) Establishing criteria for human mesenchymal stem cell potency. Transl Clin Res 33:1878–2189

    CAS  Google Scholar 

  34. Soltani A, Khazaei S, Mirtaghi SM et al (2021) Generation of high yield insulin-producing cells (IPCs) from various sources of stem cells, 1st edn. Elsevier Inc., Amsterdam, pp 235–268

    Google Scholar 

  35. Malekfar A, Valli KS, Kanafi MM, Bhonde RR (2016) Isolation and characterization of human dental pulp stem cells from cryopreserved pulp tissues obtained from teeth with irreversible pulpitis. J Endod 42:76–81. https://doi.org/10.1016/j.joen.2015.10.001

    Article  PubMed  Google Scholar 

  36. Rao SR, Subbarayan R, Dinesh MG, Arumugam G (2016) Differentiation of human gingival mesenchymal stem cells into neuronal lineages in 3D bioconjugated injectable protein hydrogel construct for the management of neuronal disorder. Exp Mol Med 48:e209–e211. https://doi.org/10.1038/emm.2015.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathew SA, Naik C, Cahill PA, Bhonde RR (2019) Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03268-1

    Article  PubMed  Google Scholar 

  38. Kadam S, GovindasamyBhonde VR (2012) Generation of functional islets from human umbilical cord and placenta derived mesenchymal stem cells. In: Singh SR (ed) Methods in molecular biology. Humana Press, Totowa, pp 291–313

    Google Scholar 

  39. Enderami SE, Soleimani M, Mortazavi Y et al (2018) Generation of insulin-producing cells from human adipose-derived mesenchymal stem cells on PVA scaffold by optimized differentiation protocol. J Cell Physiol 233:4327–4337. https://doi.org/10.1002/jcp.26266

    Article  CAS  PubMed  Google Scholar 

  40. Gopurappilly R, Bhat V, Bhonde R (2013) Pancreatic tissue resident mesenchymal stromal cell (MSC)-like cells as a source of in vitro islet neogenesis. J Cell Biochem 114:2240–2247. https://doi.org/10.1002/jcb.24572

    Article  CAS  PubMed  Google Scholar 

  41. Egan JM, Bulotta A, Hui H, Perfetti R (2003) GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells. Diabetes Metab Res Rev 19:115–123. https://doi.org/10.1002/dmrr.357

    Article  CAS  PubMed  Google Scholar 

  42. Mitutsova V, Yeo WWY, Davaze R et al (2017) Adult muscle-derived stem cells engraft and differentiate into insulin-expressing cells in pancreatic islets of diabetic mice. Stem Cell Res Ther 8:1–14. https://doi.org/10.1186/s13287-017-0539-9

    Article  CAS  Google Scholar 

  43. Navarro-Tableros V, Gai C, Gomez Y et al (2019) Islet-like structures generated in vitro from adult human liver stem cells revert hyperglycemia in diabetic scid mice. Stem Cell Rev Rep 15:93–111. https://doi.org/10.1007/s12015-018-9845-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Sharath Shetty, Dr. D. Y. Patil Dental College and Hospital, for his assistance in obtaining gingiva tissue, and Dr. Nitya Shree, Bicon (Banglore) and Dr. Shivani Desai for her assistance in editing the manuscript. The authors would like to acknowledge Dr. D. Y. Patil Vidyapeeth, Pune (India) for providing funds to carry out this research work.

Funding

No funding was recieved for this study.

Author information

Authors and Affiliations

Authors

Contributions

AHK: experimental design, experimental work. AS and MS: manuscript writing. SM and RRB: conceptualization, data interpretation, manuscript writing, and editing.

Corresponding author

Correspondence to Ramesh Bhonde.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the Institutional Committee for Stem Cells Research of Dr. D. Y. Patil Dental College and Hospital, Pune (India). Gingival tissues were obtained from healthy volunteers with their prior inform consent as per the guidelines of the institutional ethics committee of Dr. D. Y. Patil Dental College and Hospital, Pune (India).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharat, A., Sanap, A., Kheur, S. et al. Insulin-producing cell clusters derived from human gingival mesenchymal stem cells as a model for diabetes research. Mol Biol Rep 49, 11973–11982 (2022). https://doi.org/10.1007/s11033-022-08008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08008-6

Keywords

Navigation