Log in

Prospects of advanced metagenomics and meta-omics in the investigation of phytomicrobiome to forecast beneficial and pathogenic response

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Microorganisms dwell in diverse plant niches as non-axenic biotic components that are beneficial as well pathogenic for the host. They improve nutrients-uptake, stress tolerance, phytohormone synthesis, and strengthening the defense system through phyllosphere, rhizosphere, and endosphere. The negative consequences of the microbial communities are largely in the form of diseases characterized by certain symptoms such as gall, cankers, rots etc. Uncultivable and unspecified nature of different phytomicrobiomes communities is a challenge in the management of plant disease, a leading cause for the loss of the plant products. Metagenomics has opened a new gateway for the exploration of microorganisms that are hitherto unknown, enables investigation of the functional aspect of microbial gene products through metatranscriptomics and metabolomics. Metagenomics offers advantages of characterizing previously unknown microorganisms from extreme environments like hot springs, glaciers, deep seas, animal gut etc. besides bioprospecting gene products such as Taq polymerase, bor encoded indolotryptoline, hydrolases, and polyketides. This review provides a detailed account of the phytomicrobiome networks and highlights the importance and limitations of metagenomics and other meta-omics approaches for the understanding of plant microbial diversity with special focus on the disease control and its management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JH (2022) Microbial adaptation to different environmental conditions: Molecular perspective of evolved genetic and cellular systems. Arch Microbiol 204:144. https://doi.org/10.1007/s00203-022-02757-55

    Article  CAS  PubMed  Google Scholar 

  2. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  3. Wani AK, Akhtar N, Naqash N, Chopra C, Singh R, Kumar V, Kumar S, Mulla SI, Américo-Pinheiro JH (2022) Bioprospecting culturable and unculturable microbial consortia through metagenomics for bioremediation. Clean Chem Eng 100017. https://doi.org/10.1016/j.clce.2022.100017

  4. Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the Phytobiome. Cell 169(4):587–596. https://doi.org/10.1016/j.cell.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P (2019) Systems Biology of Plant-Microbiome Interactions. Mol Plant 12:804–821. https://doi.org/10.1016/j.molp.2019.05.006

    Article  CAS  PubMed  Google Scholar 

  6. Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403. https://doi.org/10.1016/j.chom.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Phil Trans R Soc Lond B 359:907–918. https://doi.org/10.1098/rstb.2003.1384

    Article  CAS  Google Scholar 

  8. Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. As endophytes. Int J Mol Sci 19(4):952. https://doi.org/10.3390/ijms19040952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W (2017) Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Int J Phytoremediation 19:813–824. https://doi.org/10.1080/15226514.2017.1290580

    Article  CAS  PubMed  Google Scholar 

  10. Sharma A, Gautam S, Wadhawan S (2014) Xanthomonas. Encyclopedia of Food Microbiology: Second Edition. Elsevier Inc., pp 811–817

  11. Jeger M, Bragard C, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K et al (2018) Pest categorisation of Pantoea stewartii subsp. stewartii. EFSA J 16(7):5356. https://doi.org/10.2903/j.efsa.2018.5356

    Article  Google Scholar 

  12. Sivakumar N, Sathishkumar R, Selvakumar G, Shyamkumar R, Arjunekumar K (2020) Phyllospheric microbiomes: Diversity, ecological significance, and biotechnological applications. In: Yadav A, Singh J, Rastegari A, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 113–172. https://doi.org/10.1007/978-3-030-38453-1_5

    Chapter  Google Scholar 

  13. Jayawardena RS, Purahong W, Zhang W, Wubet T, Li X, Liu M, Zhao W, Hyde KD, Liu J, Yan J (2018) Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers 90(1):1–84. https://doi.org/10.1007/s13225-018-0398-4

    Article  Google Scholar 

  14. Kämpfer P, Busse HJ, Glaeser SP, Kloepper JW, Hu CH, McInroy JA (2016) Bacillus cucumis sp. nov. isolated from the rhizosphere of cucumber (Cucumis sativus). Int J Syst Evol Microbiol 66:1039–1044. https://doi.org/10.1099/ijsem.0.000831

    Article  CAS  PubMed  Google Scholar 

  15. Díaz-Ramírez IJ, Ramírez-Saad H, Gutiérrez-Rojas M, Favela-Torres E (2003) Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site. Can J Microbiol 49:755–761. https://doi.org/10.1139/w03-098

    Article  PubMed  Google Scholar 

  16. de Carvalho JO, Broll V, Martinelli AHS, Lopes FC (2020) Endophytic fungi: Positive association with plants. In: Sharma V, Salwan R (eds) (ed) Molecular aspects of plant beneficial microbes in agriculture. Elsevier, pp 321–332. https://doi.org/10.1016/B978-0-12-818469-1.00026-2Laith Khalil Tawfeeq Al-Ani

  17. Torres MS, White JF (2009) Clavicipitaceae: Free-living and saprotrophs to plant endophytes. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier Inc., pp 422–430

  18. Srinivasan R, Prabhu G, Prasad M et al (2020) Penicillium. In: Amaresan N, Senthil Kumar M, Annapurna K, Kumar K, Sankaranarayanan A (eds) Beneficial microbes in agro-ecology. Elsevier, pp 651–667. https://doi.org/10.1016/B978-0-12-823414-3.00032-0

  19. Qian CD, Fu YH, Jiang FS, Xu ZH, Cheng DQ, Ding B, Gao CX, Ding ZS (2014) Lasiodiplodia sp. ME4-2, an endophytic fungus from the floral parts of Viscum coloratum, produces indole-3-carboxylic acid and other aromatic metabolites. BMC Microbiol 14:297. https://doi.org/10.1186/s12866-014-0297-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Positive role of 1-aminocyclopropane-1-carboxylate deaminase-producing endophytic Streptomyces sp. GMKU 336 on flooding resistance of mung bean. Agric Nat Resour 52:330–334. https://doi.org/10.1016/j.anres.2018.09.008

    Article  Google Scholar 

  21. Campos FF, Rosa LH, Cota BB, Caligiorne RB, Rabello AL, Alves TM, Rosa CA, Zani CL (2009) Correction: Leishmanicidal metabolites from Cochliobolus sp., an endophytic fungus isolated from Piptadenia adiantoides (Fabaceae). PLoS Negl Trop Dis 3(1). https://doi.org/10.1371/annotation/49748d99-fe4d-4c28-b77a-306d0cf7062e

  22. Zhao Y, Qian G, Chen Y et al (2017) Transcriptional and antagonistic responses of biocontrol strain Lysobacter enzymogenes OH11 to the plant pathogenic oomycete Pythium aphanidermatum. Front Microbiol 8:1025. https://doi.org/10.3389/fmicb.2017.01025

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sánchez-López AS, Pintelon I, Stevens V, Imperato V, Timmermans JP, González-Chávez C, Carrillo-González R, Van Hamme J, Vangronsveld J, Thijs S (2018) Seed endophyte microbiome of Crotalaria pumila unpeeled: Identification of plant-beneficial methylobacteria. Int J Mol Sci 19(1):291. https://doi.org/10.3390/ijms19010291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chaudhry V, Baindara P, Pal VK, Chawla N, Patil PB, Korpole S (2016) Methylobacterium indicum sp. nov., a facultative methylotrophic bacterium isolated from rice seed. Syst Appl Microbiol 39:25–32. https://doi.org/10.1016/j.syapm.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  25. Thera AT, Jacobsen BJ, Neher OT (2010) Bacterial wilt of Solanaceae caused by Ralstonia solanacearum race 1 Biovar 3 in Mali. Plant Dis 94(3):372–372

    Article  CAS  PubMed  Google Scholar 

  26. Salem EA, El-Shafea YMA (2018) Biological control of potato soft rot caused by Erwinia carotovora subsp. carotovora. Egypt J Biol Pest Control 28:1–5. https://doi.org/10.1186/s41938-018-0100-x

    Article  Google Scholar 

  27. Cazorla FM, Mercado-Blanco J (2016) Biological control of tree and woody plant diseases: An impossible task? BioControl. 61:233–242. https://doi.org/10.1007/s10526-016-9737-0

  28. Rigling D, Prospero S (2018) Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control. Mol Plant Pathol 19:7–20. https://doi.org/10.1111/mpp.12542

    Article  CAS  PubMed  Google Scholar 

  29. Talhinhas P, Batista D, Diniz I, Vieira A, Silva DN, Loureiro A, Tavares S, Pereira AP, Azinheira HG, Guerra-Guimarães L, Várzea V (2017) The coffee leaf rust pathogen Hemileia vastatrix: One and a half centuries around the tropics. Mol Plant Pathol 18:1039–1051. https://doi.org/10.1111/mpp.12512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wunderle J, Leclerque A, Schaffrath U, Slusarenko A, Koch E (2012) Assessment of the loose smut fungi (Ustilago nuda and U. tritici) in tissues of barley and wheat by fluorescence microscopy and real-time PCR. Eur J Plant Pathol 133:865–875. https://doi.org/10.1007/s10658-012-0010-9

    Article  CAS  Google Scholar 

  31. Turechek WW (2004) Apple Diseases and their Management. In: Naqvi SAMH (ed) Diseases of Fruits and Vegetables Volume I. Springer, Dordrecht, pp 1–108. https://doi.org/10.1007/1-4020-2606-4_1

    Chapter  Google Scholar 

  32. Lal M, Sharma S, Yadav S, Kumar S (2018) Management of Late Blight of Potato. In: Potato - From Incas to All Over the World. InTech

  33. Rapicavoli J, Ingel B, Blanco-Ulate B, Cantu D, Roper C (2018) Xylella fastidiosa: an examination of a re-emerging plant pathogen. Mol Plant Pathol 19:786–800. https://doi.org/10.1111/mpp.12585

    Article  CAS  PubMed  Google Scholar 

  34. Tattar TA (1989) 8 - Leaf Diseases. In: Tattar TA (ed) Diseases of Shade Trees (Revised Edition). Academic Press, San Diego, pp 89–123

    Chapter  Google Scholar 

  35. Mapuranga N (1998) A New Race of Pseudomonas syringae pv. tabaci on Tobacco in Zimbabwe. Plant Dis 82:1404–1404. https://doi.org/10.1094/pdis.1998.82.12.1404a

    Article  CAS  PubMed  Google Scholar 

  36. Kumari S, Nagendran K, Rai AB, Singh B, Rao GP, Bertaccini A (2019) Global status of phytoplasma diseases in vegetable crops. Front Microbiol 10:1349. https://doi.org/10.3389/fmicb.2019.01349

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cacciola SO, Bertaccini A, Pane A, Furneri PM (2017) Spiroplasma spp.: A plant, arthropod, animal and human pathogen. In: Citrus Pathology. InTech

  38. Srinivas C, Devi DN, Murthy KN, Mohan CD, Lakshmeesha TR, Singh B, Kalagatur NK, Niranjana SR, Hashem A, Alqarawi AA, Tabassum B (2019) Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi J Biol Sci 26(7):1315–1324. https://doi.org/10.1016/j.sjbs.2019.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Minz D, Ofek M, Hadar Y (2013) Plant rhizosphere microbial communities. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, Berlin, Heidelberg, pp 56–84. https://doi.org/10.1007/978-3-642-30123-0_38

    Chapter  Google Scholar 

  40. Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9(5):563–575. https://doi.org/10.1111/j.1364-3703.2008.00487.x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French Bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506. https://doi.org/10.3389/fmicb.2019.01506

    Article  PubMed  PubMed Central  Google Scholar 

  42. Legein M, Smets W, Vandenheuvel D, Eilers T, Muyshondt B, Prinsen E, Samson R, Lebeer S (2020) Modes of action of microbial biocontrol in the phyllosphere. Front Microbiol 11:1–18. https://doi.org/10.3389/fmicb.2020.01619

    Article  Google Scholar 

  43. Zimare SB, Borde MY, Jite PK, Malpathak NP (2013) Effect of AM Fungi (Gf, Gm) on Biomass and Gymnemic Acid Content of Gymnema sylvestre (Retz.) R. Br. ex Sm. Proc Natl Acad Sci India Sect B Biol Sci 83:439–445. https://doi.org/10.1007/s40011-013-0159-9

    Article  CAS  Google Scholar 

  44. Khan MA, Zhao Y, Korban SS (2012) Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol Biol Rep 30(2):247–260. https://doi.org/10.1007/s11105-011-0334-1

    Article  CAS  Google Scholar 

  45. Lee EH, Eo JK, Ka KH, Eom AH (2013) Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41:121–125. https://doi.org/10.5941/MYCO.2013.41.3.121

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gans J, Wolinsky M, Dunbar J (2005) Microbiology: Computational improvements reveal great bacterial diversity and high toxicity in soil. Science 309:1387–1390. https://doi.org/10.1126/science.1112665

    Article  CAS  PubMed  Google Scholar 

  47. Akhtar N, Wani AK, Dhanjal DS, Mukherjee S (2022) Insights into the beneficial roles of dark septate endophytes in plants under challenging environment: resilience to biotic and abiotic stresses. World J Microbiol Biotechnol 38:79. https://doi.org/10.1007/s11274-022-03264-x

    Article  PubMed  Google Scholar 

  48. Flemming HC, Wuertz S (2019) Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 17:247–260. https://doi.org/10.1038/s41579-019-0158-9

    Article  CAS  PubMed  Google Scholar 

  49. Kecskeméti E, Berkelmann-Löhnertz B, Reineke A (2016) Are epiphytic microbial communities in the carposphere of ripening grape clusters (Vitis vinifera L.) different between conventional, organic, and biodynamic grapes? PLoS ONE 11(8):e0160852. https://doi.org/10.1371/JOURNAL.PONE.0160852

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wicaksono WA, Jones EE, Monk J, Ridgway HJ (2016) The bacterial signature of Leptospermum scoparium (Mānuka) reveals core and accessory communities with bioactive properties. PLoS ONE 11(9):e0163717. https://doi.org/10.1371/journal.pone.0163717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Noble AS, Noe S, Clearwater MJ, Lee CK (2020) A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand. PLoS ONE 15(8):e0237079. https://doi.org/10.1371/journal.pone.0237079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Abdelfattah A, Wisniewski M, Schena L, Tack AJM (2021) Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ Microbiol 23(4):2199–2214. https://doi.org/10.1111/1462-2920.15392

    Article  CAS  PubMed  Google Scholar 

  53. Wani AK, Rahayu F, Kadarwati FT et al (2022) Metagenomic screening strategies for bioprospecting enzymes from environmental samples. IOP Conf Ser: Earth Environ Sci 974(1):012003. https://doi.org/10.1088/1755-1315/974/1/012003

    Article  Google Scholar 

  54. Chhabra S, Brazil D, Morrissey J, Burke JI, O’Gara F, Dowling N D (2013) Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiologyopen 2(5):717–724. https://doi.org/10.1002/mbo3.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsurumaru H, Okubo T, Okazaki K, Hashimoto M, Kakizaki K, Hanzawa E, Takahashi H, Asanome N, Tanaka F, Sekiyama Y, Ikeda S (2015) Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ 30:63–69. https://doi.org/10.1264/jsme2.ME14109

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bandla A, Pavagadhi S, Sridhar Sudarshan A, Poh MC, Swarup S (2020) 910 metagenome-assembled genomes from the phytobiomes of three urban-farmed leafy Asian greens. Sci Data 7(1):1–7. https://doi.org/10.1038/s41597-020-00617-9

    Article  CAS  Google Scholar 

  57. Zhou Y, Wang X, Wei W, Xu J, Wang W, **e Z, Zhang Z, Jiang H, Wang Q, Wei C (2016) A novel efficient β-glucanase from a paddy soil microbial metagenome with versatile activities. Biotechnol Biofuels 9(1):1–4. https://doi.org/10.1186/s13068-016-0449-6

    Article  CAS  Google Scholar 

  58. Maruthamuthu M, Jiménez DJ, Stevens P, van Elsas JD (2016) A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveilsnovel thermoalkaliphilic enzymes. BMC Genom 17:86. https://doi.org/10.1186/s12864-016-2404-0

    Article  CAS  Google Scholar 

  59. Kanokratana P, Eurwilaichitr L, Pootanakit K, Champreda V (2015) Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation. J Biosci Bioeng 119:384–391. https://doi.org/10.1016/j.jbiosc.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  60. Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78:1556–1562. https://doi.org/10.1128/AEM.06725-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mirete S, Morgante V, González-Pastor JE (2016) Functional metagenomics of extreme environments. Curr Opin Biotechnol 38:143–149. https://doi.org/10.1016/j.copbio.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  62. Müller CA, Perz V, Provasnek C, Quartinello F, Guebitz GM, Berg G (2017) Discovery of polyesterases from mossassociated microorganisms. Appl Environ Microbiol 83(4):e02641–e02616. https://doi.org/10.1128/AEM.02641-16

    Article  PubMed  PubMed Central  Google Scholar 

  63. Basner A, Antranikian G (2014) Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome. PLoS ONE 9(1):e85844. https://doi.org/10.1371/journal.pone.0085844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tan H, Wu X, **e L, Huang Z, Peng W, Gan B (2016) Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Appl Microbiol Biotechnol 100:2225–2241. https://doi.org/10.1007/s00253-015-7097-9

    Article  CAS  PubMed  Google Scholar 

  65. Handschur M, Pinar G, Gallist B, Lubitz W, Haslberger AG (2005) Culture free DGGE and cloning based monitoring of changes in bacterial communities of salad due to processing. Food Chem Toxicol 43:1595–1605. https://doi.org/10.1016/j.fct.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  66. Woźniak M, Gałązka A, Tyśkiewicz R, Jaroszuk-Ściseł J (2019) Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/physiological profiles in the Biolog GEN III MicroPlateTM test. Int J Mol Sci 20(21):5283. https://doi.org/10.3390/ijms20215283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prakash O, Pandey PK, Kulkarni GJ, Mahale KN, Shouche YS (2014) Technicalities and glitches of terminal restriction fragment length polymorphism (T-RFLP). Indian J Microbiol 54(3):255–261. https://doi.org/10.1007/s12088-014-0461-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Egert M, Friedrich MW (2003) Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. Appl Environ Microbiol 69:2555–2562. https://doi.org/10.1128/AEM.69.5.2555-2562.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Johnston-Monje D, Lundberg DS, Lazarovits G et al (2016) Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405:337–355. https://doi.org/10.1007/s11104-016-2826-0

    Article  CAS  Google Scholar 

  70. Buermans HPJ, den Dunnen JT (2014) Next generation sequencing technology: Advances and applications. Biochim Biophys Acta Mol Basis Dis BBA-MOL BASIS DIS 1842. 1932–1941. https://doi.org/10.1016/j.bbadis.2014.06.015. 10

  71. Gong B, Cao H, Peng C, Perčulija V, Tong G, Fang H, Wei X, Ouyang S (2019) High-throughput sequencing and analysis of microbial communities in the mangrove swamps along the coast of Beibu Gulf in Guangxi, China. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-45804-w

    Article  CAS  Google Scholar 

  72. Kumar S, Krishnani KK, Bhushan B, Brahmane MP (2015) Metagenomics: Retrospect and prospects in high throughput age. Biotechnol Res Int 2015:121735. https://doi.org/10.1155/2015/121735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4. https://doi.org/10.1016/j.tplants.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  74. Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: Open and closed formats. MBio 6(1):e02288–e02214. https://doi.org/10.1128/mBio.02288-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ngara TR, Zhang H (2018) Recent advances in function-based metagenomic screening. Genom Proteom Bioinf 16:405–415. https://doi.org/10.1016/j.gpb.2018.01.002

    Article  Google Scholar 

  76. Babalola OO, Fadiji AE, Ayangbenro AS (2020) Shotgun metagenomic data of root endophytic microbiome of maize (Zea mays L.). Data in Brief 31:105893. https://doi.org/10.1016/j.dib.2020.105893

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mukherjee A, Reddy MS (2020) Metatranscriptomics: an approach for retrieving novel eukaryotic genes from polluted and related environments. 3 Biotech 10(2):1–9. https://doi.org/10.1007/s13205-020-2057-1

    Article  Google Scholar 

  78. Jiang CH, Yao XF, Mi DD, Li ZJ, Yang BY, Zheng Y, Qi YJ, Guo JH (2019) Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis F21 against Fusarium wilt on watermelon. Front Microbiol 10:652. https://doi.org/10.3389/fmicb.2019.00652

    Article  PubMed  PubMed Central  Google Scholar 

  79. Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258. https://doi.org/10.1038/ismej.2013.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martinez X, Pozuelo M, Pascal V, Campos D, Gut I, Gut M, Azpiroz F, Guarner F, Manichanh C (2016) MetaTrans: An open-source pipeline for metatranscriptomics. Sci Rep 6:26447. https://doi.org/10.1038/srep26447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fernandez O, Urrutia M, Bernillon S, Giauffret C, Tardieu F, Le Gouis J, Langlade N, Charcosset A, Moing A, Gibon Y (2016) Fortune telling: Metabolic markers of plant performance. Metabolomics 12:158. https://doi.org/10.1007/s11306-016-1099-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Korenblum E, Dong Y, Szymanski J, Panda S, Jozwiak A, Massalha H, Meir S, Rogachev I, Aharoni A (2020) Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci USA 117:3874–3883. https://doi.org/10.1073/pnas.1912130117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang W, Sun D, Chen L, An Y (2021) Integrative analysis of the microbiome and metabolome in understanding the causes of sugarcane bitterness. Sci Rep 11:6024. https://doi.org/10.1038/s41598-021-85433-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Keller MD, Bergstrom GC, Shields EJ (2014) The aerobiology of Fusarium graminearum. Aerobiologia 30:123–136. https://doi.org/10.1007/s10453-013-9321-3

    Article  Google Scholar 

  85. Saponari M, Boscia D, Altamura G, Loconsole G, Zicca S, D’attoma G, Morelli M, Palmisano F, Saponari A, Tavano D, Savino VN (2017) Isolation and pathogenicity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy. Sci Rep 7:17723. https://doi.org/10.1038/s41598-017-17957-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Franić I, Prospero S, Hartmann M, Allan E, Auger-Rozenberg MA, Grünwald NJ, Kenis M, Roques A, Schneider S, Sniezko R, Williams W (2019) Are traded forest tree seeds a potential source of nonnative pests? Ecol Appl 29:e01971. https://doi.org/10.1002/eap.1971

    Article  PubMed  Google Scholar 

  87. Franco Ortega S, Ferrocino I, Adams I, Silvestri S, Spadaro D, Gullino ML, Boonham N (2020) Monitoring and surveillance of aerial mycobiota of rice paddy through dna metabarcoding and qPCR. J Fungi (Basel) 6(4):372. https://doi.org/10.3390/jof6040372

    Article  CAS  PubMed  Google Scholar 

  88. Piombo E, Abdelfattah A, Droby S, Wisniewski M, Spadaro D, Schena L (2021) Metagenomics approaches for the detection and surveillance of emerging and recurrent plant pathogens. Microorganisms 9(1):188. https://doi.org/10.3390/microorganisms9010188

    Article  PubMed  PubMed Central  Google Scholar 

  89. Calle ML (2019) Statistical Analysis of Metagenomics Data. Genomics Inf 17:e6. https://doi.org/10.5808/GI.2019.17.1.e6

    Article  Google Scholar 

  90. Odintsova V, Tyakht A, Alexeev D (2017) Guidelines to statistical analysis of microbial composition data inferred from metagenomic sequencing. Curr Issues Mol Biol 24:17–36. https://doi.org/10.21775/cimb.024.017

    Article  PubMed  Google Scholar 

  91. Wani AK, Hashem NM, Akhtar N, Singh R, Madkour M, Prakash A (2022) Understanding microbial networks of farm animals through genomics, metagenomics and other meta-omic approaches for livestock wellness and sustainability. Ann Anim Sci. https://doi.org/10.2478/aoas-2022-0002

    Article  Google Scholar 

  92. Wani AK, Roy P, Kumar V, Mir T, ul G (2022) Metagenomics and artificial intelligence in the context of human health. Infect Genet Evol 105267. https://doi.org/10.1016/j.meegid.2022.105267

  93. Pereira MB, Wallroth M, Jonsson V, Kristiansson E (2018) Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genomics 19(1):1–7. https://doi.org/10.1186/s12864-018-4637-6

    Article  CAS  Google Scholar 

  94. VEGAN (2003) a package of R functions for community ecology - Dixon – 2003 - Journal of Vegetation Science - Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1111/j.1654-1103.tb02228.x. Accessed 16 Jul 2022

  95. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  96. Breitwieser FP, Baker DN, Salzberg SL (2018) KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol 19:198. https://doi.org/10.1186/s13059-018-1568-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McNair K, Edwards RA (2015) GenomePeek—an online tool for prokaryotic genome and metagenome analysis. PeerJ 3:e1025. https://doi.org/10.7717/peerj.1025

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mongad DS, Chavan NS, Narwade NP, Dixit K, Shouche YS, Dhotre DP (2021) MicFunPred: A conserved approach to predict functional profiles from 16S rRNA gene sequence data. Genomics 113:3635–3643. https://doi.org/10.1016/j.ygeno.2021.08.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge authorities of Lovely Professional University.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabha B. Zimare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Ethical approval:

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, A.K., Akhtar, N., Singh, R. et al. Prospects of advanced metagenomics and meta-omics in the investigation of phytomicrobiome to forecast beneficial and pathogenic response. Mol Biol Rep 49, 12165–12179 (2022). https://doi.org/10.1007/s11033-022-07936-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07936-7

Keywords

Navigation