Log in

Genome editing (CRISPR-Cas)-mediated virus resistance in potato (Solanum tuberosum L.)

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plant viruses are the major pathogens that cause heavy yield loss in potato. The important viruses are potato virus X, potato virus Y and potato leaf roll virus around the world. Besides these three viruses, a novel tomato leaf curl New Delhi virus is serious in India. Conventional cum molecular breeding and transgenics approaches have been applied to develop virus resistant potato genotypes. But progress is slow in develo** resistant varieties due to lack of host genes and long breeding process, and biosafety concern with transgenics. Hence, CRISPR-Cas mediated genome editing has emerged as a powerful technology to address these issues. CRISPR-Cas technology has been deployed in potato for several important traits. We highlight here CRISPR-Cas approaches of virus resistance through targeting viral genome (DNA or RNA), host factor gene and multiplexing of target genes simultaneously. Further, advancement in CRISPR-Cas research is presented in the area of DNA-free genome editing, virus-induced genome editing, and base editing. CRISPR-Cas delivery, transformation methods, and challenges in tetraploid potato and possible methods are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Included in the manuscript

Code availability

Not applicable.

References

  1. Varanda CMR, Félix MR, Campos MD, Patanita M, Materatski P (2021) Plant viruses: from targets to tools for CRISPR. Viruses 13:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bartola MD, Byrne S, Mullins E (2020) Characterization of potato virus Y isolates and assessment of nanopore sequencing to detect and genotype potato viruses. Viruses 12:478

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jeffries C, Barker H, Khurana SMP (2006) Viruses and Viroids. In: Gopal J, Khurana SMP (eds) Handbook of Potato Production, Improvement, and Postharvest Management. The Haworth Press Inc, NY, pp 387–448

    Google Scholar 

  4. Jeevalatha A, Chakrabarti SK, Sharma S, Sagar V et al (2017) Diversity analysis of tomato leaf curl New Delhi virus–[potato], causing apical leaf curl disease of potato in India. Phytoparasitica 45:33–43

    Article  Google Scholar 

  5. Jeevalatha A, Vanishree G, Siddappa S, Kumar R et al (2021) Molecular characterization and infectivity analysis of tomato leaf curl New Delhi virus isolates infecting potato. 3 Biotech 11:203

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kreuze JF, Souza-Dias JAC, Jeevalatha A, Figueira AR et al (2020) Viral diseases in potato. In: Campos H, Ortiz O (eds) The potato crop. Springer, Cham, pp 389–430

    Chapter  Google Scholar 

  7. Singh RK, Buckseth T, Tiwari JK, Sharma AK et al (2019) Seed potato (Solanum tuberosum) production systems in India: a chronological outlook. Indian J Agric Sci 89:578–587

    Google Scholar 

  8. Saurabh S (2021) Genome editing: revolutionizing the crop improvement. Plant Mol Biol Rep 39:752–772

    Article  CAS  Google Scholar 

  9. Tussipkan D, Manabayeva SA (2021) Employing CRISPR/Cas technology for the improvement of potato and other tuber crops. Front Plant Sci. 12:747476

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang D, Hussain A, Manghwar H, **e K et al (2020) Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol J 18:1651–1669

    Article  PubMed  PubMed Central  Google Scholar 

  11. Khatodia S, Bhatotia K, Passricha N, Khurana SM, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front. Plant Sci 7:506

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dangol SD, Barakate A, Stephens J, Çalıskan ME, Bakhsh A (2019) Genome editing of potato using CRISPR technologies: current development and future prospective. Plant Cell Tiss Org Cult 139:403–416

    Article  Google Scholar 

  13. Mushtaq M, Sakina A, Wani SH, Shikari AB et al (2019) Harnessing genome editing techniques to engineer disease resistance in plants. Front Plant Sci 10:550

    Article  PubMed  PubMed Central  Google Scholar 

  14. Srivastava V (2019) CRISPR applications in plant genetic engineering & biotechnology. In: Khurana SMP, Gaur RK (eds) Plant biotechnology progress in genomic era. Springer Nature, Singapore, pp 429–459

    Chapter  Google Scholar 

  15. Ghorbani A, Hadifar S, Salari R, Izadpanah K et al (2021) A short overview of CRISPR-Cas technology and its application in viral disease control. Transgenic Res 30:221–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tiwari JK, Buckseth T, Singh RK, Kumar M, Kant S (2020) Prospects of improving nitrogen use efficiency in potato: lessons from transgenics to genome editing strategies in plants. Front Plant Sci 11:597481

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tiwari JK, Gopal J, Singh BP (2012) Marker-assisted selection for virus resistance in potato: options and challenges. Potato J 39:101–117

    Google Scholar 

  18. Torrance L, Cowan GH, McLean K, MacFarlane S et al (2020) Natural resistance to potato virus Y in Solanum tuberosum Group Phureja. Theor Appl Genet 133:967–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arif M, Azhar U, Arshad M, Zafar Y et al (2011) Engineering broad-spectrum resistance against RNA viruses in potato. Transgenic Res 21:303–311

    Article  PubMed  Google Scholar 

  20. Missiou A, Kalantidis K, Boutla A, Tzortzakaki S et al (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breed 14:185–197

    Article  CAS  Google Scholar 

  21. Ghosh SB, Nagi LHS, Ganapathi TR, Khurana SMP, Bapat VA (2006) Development of coat protein gene mediated resistance against potato viruses (PVY) in potato cultivar Kufri Jyoti. Physiol Mol Biol Plants 12:133–138

    CAS  Google Scholar 

  22. Kumari P, Kumar J, Kumar RR, Ansar M et al (2020) Inhibition of potato leafroll virus multiplication and systemic translocation by siRNA constructs against putative ATPase fold of movement protein. Sci Rep 10:22016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sajid IA, Tabassum B, Yousaf I, Khan A et al (2020) In vivo gene silencing of potato virus X by small interference RNAs in transgenic potato. Potato Res 63:143–155

    Article  CAS  Google Scholar 

  24. Tomar G, Chakrabarti SK, Sharma NN, Jeevalatha A et al (2018) RNAi-based transgene conferred extreme resistance to the geminivirus causing apical leaf curl disease in potato. Plant Biotechnol Rep 12:195–205

    Article  Google Scholar 

  25. Hameed A, Tahir MN, Asad S, Bilal R et al (2017) RNAi-mediated simultaneous resistance against three RNA viruses in potato. Mol Biotechnol 59:73–83

    Article  CAS  PubMed  Google Scholar 

  26. Gaur RK, Verma RK, Khurana SMP (2018) Genetic engineering of horticultural crops: present and future. In: Rout GR, Peter KV (eds) Genetic engineering of horticultural crops. Academic Press, Elsevier, pp 23–46

    Chapter  Google Scholar 

  27. Miroshnichenko D, Timerbaev V, Okuneva A, Klementyeva A et al (2020) Enhancement of resistance to PVY in intragenic marker-free potato plants by RNAi-mediated silencing of eIF4E translation initiation factors. Plant Cell Tissue Organ Cult 140:691–705

    Article  CAS  Google Scholar 

  28. Bastet A, Lederer B, Giovinazzo N, Arnoux X et al (2018) Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnol J 16:1569–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bastet A, Robaglia C, Gallois JL (2017) eIF4E resistance: natural variation should guide gene editing. Trends Plant Sci 22:411–419

    Article  CAS  PubMed  Google Scholar 

  30. Duan H, Richael C, Rommens CM (2012) Overexpression of the wild potato eIF4E-1 variant Eva1 elicits potato virus Y resistance in plants silenced for native eIF4E-1. Transgenic Res 21:929–938

    Article  CAS  PubMed  Google Scholar 

  31. Gutierrez Sanchez PA, Babujee L, Mesa HJ, Arcibal E et al (2020) Overexpression of a modified elF4E regulates potato virus Y resistance at the transcriptional level in potato. BMC Genomics 21:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hameed A, Shan-E-Ali Zaidi S, Sattar MN, Iqbal Z, Tahir MN (2019) CRISPR technology to combat plant RNA viruses: a theoretical model for Potato virus Y (PVY) resistance. Microb Pathog 133:103551

    Article  CAS  PubMed  Google Scholar 

  33. Bastet A, Zafirov D, Giovinazzo N, Guyon-Debast A et al (2019) Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnol J 17:1736–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    Article  CAS  PubMed  Google Scholar 

  35. Cao Y, Zhou H, Zhou X, Li F (2020) Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity. Front Microbiol 11:593700

    Article  PubMed  PubMed Central  Google Scholar 

  36. Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci USA 112:6164–6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aman R, Ali Z, Butt H, Mahas A et al (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19:1

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ali Z, Ali S, Tashkandi M, Zaidi SS, Mahfouz MM (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6:26912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ali Z, Abulfaraj A, Idris A, Ali S et al (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238

    Article  PubMed  PubMed Central  Google Scholar 

  40. Khan S, Mahmood MS, Rahman SU, Rizvi F, Ahmad A (2020) Evaluation of the CRISPR/Cas9 system for the development of resistance against Cotton leaf curl virus in model plants. Plant Prot Sci 56:154–162

    Article  CAS  Google Scholar 

  41. Liu H, Soyars CL, Li J, Fei Q et al (2018) CRISPR/Cas9-mediated resistance to cauliflower mosaic virus. Plant Direct 2:e00047

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yin K, Han T, **e K, Zhao J et al (2019) Engineer complete resistance to Cotton Leaf Curl Multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana. Phytopathol Res 1:9

    Article  Google Scholar 

  43. Roy A, Zhai Y, Ortiz J, Neff M et al (2019) Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development. PLoS One 14:e0223765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang T, Zheng Q, Yi X, An H et al (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J 16:1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhan X, Zhang F, Zhong Z, Chen R et al (2019) Generation of virus-resistant potato plants by RNA genome targeting. Plant Biotechnol J 17:1814–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17:1276–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Makhotenko AV, Khromov AV, Snigir EA, Makarova SS et al (2019) Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing. Dokl Biochem Biophys 484:88–91

    Article  CAS  PubMed  Google Scholar 

  48. Andersson M, Turesson H, Nicolia A, Fält AS et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  PubMed  Google Scholar 

  49. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  50. Sun D, Guo Z, Liu Y, Zhang Y (2017) Progress and prospects of CRISPR/Cas systems in insects and other arthropods. Front Physiol 8:608

    Article  PubMed  PubMed Central  Google Scholar 

  51. Najera VA, Twyman RM, Christou P, Zhu C (2019) Applications of multiplex genome editing in higher plants. Curr Opin Biotechnol 59:93–102

    Article  Google Scholar 

  52. Metje-Sprink J, Menz J, Modrzejewski D, Sprink T (2019) DNA-free genome editing: past, present and future. Front Plant Sci 9:1957

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ma X, Zhang X, Liu H, Li Z (2020) Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nat Plants 6:773–779

    Article  CAS  PubMed  Google Scholar 

  54. Kim H, Kim ST, Ryu J, Kang BC et al (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu W, Rudis MR, Cheplick MH, Millwood RJ et al (2020) Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Rep 39:245–257

    Article  CAS  PubMed  Google Scholar 

  56. Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L) using sequence-specific nucleases. Front Plant Sci 7:1045

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ariga H, Toki S, Ishibashi K (2020) Potato virus X vector-mediated DNA-free genome editing in plants. Plant Cell Physiol 61:1946–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Uranga M, Aragonés V, Selma S, Vázquez-Vilar M et al (2021) Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. Plant J 106:555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mishra R, Joshi RK, Zhao K (2020) Base editing in crops: current advances, limitations and future implications. Plant Biotechnol J 18:20–31

    Article  PubMed  Google Scholar 

  60. Veillet F, Kermarrec MP, Chauvin L, Chauvin JE, Nogué F (2020) CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato. PLoS One 15:e0235942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kusano H, Ohnuma M, Mutsuro-Aoki H, Asahi T et al (2018) Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Sci Rep 8:13753

    Article  PubMed  PubMed Central  Google Scholar 

  62. Johansen IE, Liu Y, Jørgensen B, Bennett EP et al (2019) High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 9:17715

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sandhya D, Jogam P, Allini VR, Abbagani S, Alok A (2020) The present and potential future methods for delivering CRISPR/Cas9 components in plants. J Genetic Eng Biotechnol 18:25

    Article  Google Scholar 

  64. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39–47

    Article  PubMed  PubMed Central  Google Scholar 

  65. Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:e0144591

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gaudelli NM, Komor AC, Rees H et al (2017) Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 551:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kalinina NO, Khromov A, Love AJ, Taliansky ME (2020) CRISPR applications in plant virology: virus resistance and beyond. Phytopathology 110:18–28

    Article  CAS  PubMed  Google Scholar 

  68. Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:15144

    Article  CAS  PubMed  Google Scholar 

  69. Baltes NJ, Hummel AW, Konecna E, Cegan R et al (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:15145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kis A, Hamar E, Tholt G, Ban R, Havelda Z (2019) Creating highly efficient resistance against Wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J 17:1004–1006

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang T, Zhao Y, Ye J, Cao X et al (2019) Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol J 17:1185–1187

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tripathi JN, Ntui VO, Ron M, Muiruri SK et al (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp overcomes a major challenge in banana breeding. Commun Biol 2:46

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gomez MA, Lin ZD, Moll T, Chauhan RD et al (2019) Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol J 17:421–434

    Article  CAS  PubMed  Google Scholar 

  74. Chandrasekaran J, Brumin M, Wolf D, Leibman D et al (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Atarashi H, Jayasinghe WH, Kwon J, Kim H et al (2020) Artificially edited alleles of the eukaryotic translation initiation factor 4E1 gene differentially reduce susceptibility to cucumber mosaic virus and potato virus Y in tomato. Front Microbiol 11:564310

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yoon YJ, Venkatesh J, Lee JH, Kim J et al (2020) Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus. Front Plant Sci 11:1098

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pramanik D, Shelake RM, Park J, Kim MJ, Hwang I, Park Y, Kim JY (2021) CRISPR/Cas9-Mediated generation of pathogen-resistant tomato against Tomato Yellow Leaf Curl Virus and powdery mildew. Inter J Mol Sci 22:1878

    Article  CAS  Google Scholar 

  78. Park J, Choe S (2019) DNA-free genome editing with preassembled CRISPR/Cas9 ribonucleoproteins in plants. Transgenic Res 28(Suppl 2):61–64

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors thank Director, ICAR-CPRI, Shimla and CABin Scheme (ICAR-IASRI, New Delhi) for necessary support.

Funding

The work is funded by the ICAR-CPRI, Shimla, Himachal Pradesh, India.

Author information

Authors and Affiliations

Authors

Contributions

JKT and JA wrote the manuscript. SMPK and NT critically edited and improved the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jagesh Kumar Tiwari.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable

Consent for publication

All authors read and approved the final manuscript for publication

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, J.K., A., J., Tuteja, N. et al. Genome editing (CRISPR-Cas)-mediated virus resistance in potato (Solanum tuberosum L.). Mol Biol Rep 49, 12109–12119 (2022). https://doi.org/10.1007/s11033-022-07704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07704-7

Keywords

Navigation