Log in

Evaluation of the antiapoptotic and anti-inflammatory properties of chitosan in methotrexate-induced oral mucositis in rats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Methotrexate (MTX), a chemotherapeutic agent, is known to cause oral mucositis. Chitosan has been shown to have a protective effect in inflammatory animal models. This research aimed to examine the protective effect of chitosan against oral mucositis caused by MTX.

Methods and results

Wistar albino rats were randomly divided into three groups. Control (n = 8), (saline via oral gavage for 5 days), MTX (n = 8), (60 mg/kg single dose MTX intraperitoneally on the 1st day and for the following 4 days saline via oral gavage), and MTX + chitosan (n = 8), (1st day single dose 60 mg/kg MTX intraperitoneally and followed with 200 mg/kg chitosan via oral gavage for 4 days). After 24 h of the last dose, the animals were euthanised. Blood, tongue, buccal and palatal mucosa tissues were collected. Serum interleukin 1-beta (IL1-β), tumour necrosis factor-alpha (TNF-α), matrix metalloproteinase (MMP-1, and MMP-2) activities, tissue bcl-2/bax ratio and the expression of caspase-3 (casp-3), and casp-9 were detected. The tissues were also examined histologically. Serum TNF-α, IL1-β, MMP-1 and MMP-2 activities and tissue casp-3 and casp-9 activities significantly increased but the bcl-2/bax ratio significantly decreased in the MTX group compared those of the control group. Histologically, diffuse inflammatory cells were observed in MTX group. However, In the MTX + chitosan group, all the values were close to those of the control group.

Conclusion

It was demonstrated that chitosan has a protective effect against oral mucosal damage caused by MTX. Thus, it may be a candidate agent against MTX induced oral mucositis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Harris DJ (2006) Cancer treatment-induced mucositis pain: strategies for assessment and management. Ther Clin Risk Manag 2:251–258. https://doi.org/10.2147/TCRM.2006.2.3.251

    Article  PubMed  PubMed Central  Google Scholar 

  2. Al-Ansari S, Zecha JAEM, Barasch A et al (2015) Oral Mucositis Induced By Anticancer Therapies. Curr Oral Health Rep 2:202–211. https://doi.org/10.1007/S40496-015-0069-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cinausero M, Aprile G, Ermacora P et al (2017) New frontiers in the pathobiology and treatment of cancer regimen-related mucosal injury. Front Pharmacol 8:354. https://doi.org/10.3389/FPHAR.2017.00354

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cawley MM, Benson LM (2005) Current trends in managing oral mucositis. Clin J Oncol Nurs 9:584–592. https://doi.org/10.1188/05.CJON.584-592

    Article  PubMed  Google Scholar 

  5. Munaretto JC, Ponzoni D, Sabbagh-Haddad A, Puricelli E (2011) Preliminary histological analysis of methotrexate-induced oral mucositis: experimental study in mice. Revista da Faculdade de Odontologia – UPF 16:144–148. https://doi.org/10.5335/RFO.V16I2.2118

    Article  Google Scholar 

  6. Alrifai A, Kamal A (2019) Protective role of honey on the dorsal surface of the tongue of chemotherapy treated albino rats (immunohistochemical study). https://www.researchgate.net/publication/332979098

  7. Barbosa F, Tanus-Santos JE, Gerlach RF, Parsons PJ (2005) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 113:1669–1674. https://doi.org/10.1289/EHP.7917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Komousani KA, Moselhy SS (2011) Modulation of lead biohazards using a combination of epicatechin and lycopene in rats. Hum Exp Toxicol 30:1674–1681. https://doi.org/10.1177/0960327110396536

    Article  CAS  PubMed  Google Scholar 

  9. Wang Z, Yan Y, Yu X et al (2016) Protective effects of chitosan and its water-soluble derivatives against lead-induced oxidative stress in mice. Int J Biol Macromol 83:442–449. https://doi.org/10.1016/J.IJBIOMAC.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  10. Mutlu N, Ersan Y, Nur G, Koç E (2009) Protective effect of caffeic acid phenethyl ester against lead acetate-induced hepatotoxicity in mice. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 17. https://doi.org/10.9775/KVFD.2010.2717

  11. Yeoh ASJ, Gibson RJ, Yeoh EEK et al (2007) A novel animal model to investigate fractionated radiotherapy-induced alimentary mucositis: the role of apoptosis, p53, nuclear factor-κB, COX-1, and COX-2. Mol Cancer Ther 6:2319–2327. https://doi.org/10.1158/1535-7163.MCT-07-0113

    Article  CAS  PubMed  Google Scholar 

  12. Bowen JM, Gibson RJ, Tsykin A et al (2007) Gene expression analysis of multiple gastrointestinal regions reveals activation of common cell regulatory pathways following cytotoxic chemotherapy. Int J Cancer 121:1847–1856. https://doi.org/10.1002/IJC.22895

    Article  CAS  PubMed  Google Scholar 

  13. Al-Dasooqi N, Sonis ST, Bowen JM et al (2013) Emerging evidence on the pathobiology of mucositis. Support Care Cancer 21:2075–2083. https://doi.org/10.1007/S00520-013-1810-Y

    Article  PubMed  Google Scholar 

  14. Bowen J, Al-Dasooqi N, Bossi P et al (2019) The pathogenesis of mucositis: updated perspectives and emerging targets. Support Care Cancer 27:4023–4033. https://doi.org/10.1007/S00520-019-04893-Z

    Article  CAS  PubMed  Google Scholar 

  15. Al-Azri AR, Gibson RJ, Keefe DMK, Logan RM (2013) Matrix metalloproteinases: do they play a role in mucosal pathology of the oral cavity? Oral Dis 19:347–359. https://doi.org/10.1111/ODI.12023

    Article  CAS  PubMed  Google Scholar 

  16. Rajagopalan PTR, Zhang Z, McCourt L et al (2002) Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc Natl Acad Sci USA 99:13481–13486. https://doi.org/10.1073/PNAS.172501499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peterson DE, Lalla RV (2010) Oral mucositis: the new paradigms. Curr Opin Oncol 22:318–322. https://doi.org/10.1097/CCO.0B013E32833A9FAB

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ahmed AAM, Selim MAA, El-Sayed NM (2017) α-Lipoic acid ameliorates oral mucositis and oxidative stress induced by methotrexate in rats. Histological and immunohistochemical study. Life Sci 171:51–59. https://doi.org/10.1016/J.LFS.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  19. Khanal L, Yadav P, Baral P et al (2019) Effect of local bee honey on dihydrofolate reductase enzyme inhibitor-induced mucositis: a histological study on albino Wistar rats. Indian J Dent Res 30:708–715. https://doi.org/10.4103/IJDR.IJDR_689_17

    Article  PubMed  Google Scholar 

  20. Ozcicek F, Kara AV, Akbas EM et al (2020) Effects of anakinra on the small intestine mucositis induced by methotrexate in rats. Exp Anim 69:144–152. https://doi.org/10.1538/EXPANIM.19-0057

    Article  CAS  PubMed  Google Scholar 

  21. Kim SG, Chae CH, Cho BO et al (2006) Apoptosis of oral epithelial cells in oral lichen planus caused by upregulation of BMP-4. J Oral Pathol Med 35:37–45. https://doi.org/10.1111/J.1600-0714.2005.00373.X

    Article  CAS  PubMed  Google Scholar 

  22. Mannello F, Luchetti F, Falcieri E, Papa S (2005) Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis 10:19–24. https://doi.org/10.1007/S10495-005-6058-7

    Article  CAS  PubMed  Google Scholar 

  23. van der Beek JN, Oosterom N, Pieters R et al (2019) The effect of leucovorin rescue therapy on methotrexate-induced oral mucositis in the treatment of paediatric ALL: a systematic review. Crit Rev Oncol Hematol 142:1–8. https://doi.org/10.1016/J.CRITREVONC.2019.07.003

    Article  PubMed  Google Scholar 

  24. Toz H, Değer Y (2018) The effect of chitosan on the erythrocyte antioxidant potential of lead toxicity-induced rats. Biol Trace Elem Res 184:114–118. https://doi.org/10.1007/S12011-017-1164-2

    Article  CAS  PubMed  Google Scholar 

  25. Wu KY, Wu M, Fu ML et al (2006) A novel chitosan CpG nanoparticle regulates cellular and humoral immunity of mice. Biomed Environ Sci 19:87–95

    CAS  PubMed  Google Scholar 

  26. Saravanakumar K, Mariadoss AVA, Sathiyaseelan A et al (2021) pH-sensitive release of fungal metabolites from chitosan nanoparticles for effective cytotoxicity in prostate cancer (PC3) cells. Process Biochem 102:165–172. https://doi.org/10.1016/J.PROCBIO.2020.12.005

    Article  CAS  Google Scholar 

  27. Mariadoss AVA, Vinayagam R, Senthilkumar V et al (2019) Phloretin loaded chitosan nanoparticles augments the pH-dependent mitochondrial-mediated intrinsic apoptosis in human oral cancer cells. Int J Biol Macromol 130:997–1008. https://doi.org/10.1016/J.IJBIOMAC.2019.03.031

    Article  CAS  PubMed  Google Scholar 

  28. Farraj T, Ajam M, Gençosman S et al (2021) Biochemical significance of biomaterials based on the chitin-chitosan axis. Acta Sci Gastron Disord 4. https://www.issn.org/2582-1091

  29. Şenel S, Kremer MJ, Kaş S et al (2000) Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials 21:2067–2071. https://doi.org/10.1016/S0142-9612(00)00134-4

    Article  PubMed  Google Scholar 

  30. Patel A, Rajesh S, Chandrashekhar VM et al (2013) A rat model against chemotherapy plus radiation-induced oral mucositis. Saudi Pharm J 21:399–403. https://doi.org/10.1016/J.JSPS.2012.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sehirli A, Aksoy U, Kermeoglu F et al (2019) Protective effect of alpha-lipoic acid against apical periodontitis-induced cardiac injury in rats. Eur J Oral Sci 127:333–339. https://doi.org/10.1111/EOS.12618

    Article  CAS  PubMed  Google Scholar 

  32. Sathiyaseelan A, Saravanakumar K, Mariadoss AVA, Wang MH (2021) pH-controlled nucleolin targeted release of dual drug from chitosan-gold based aptamer functionalized nano drug delivery system for improved glioblastoma treatment. Carbohyd Polym 262. https://doi.org/10.1016/J.CARBPOL.2021.117907

  33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  34. Vissink A, Jansma J, Spijkervet FKL et al (2003) Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med 14:199–212. https://doi.org/10.1177/154411130301400305

    Article  CAS  PubMed  Google Scholar 

  35. Çakir T, Polat C, Baştürk A et al (2015) The effect of alpha lipoic acid on rat kidneys in methotrexate induced oxidative injury. Eur Rev Med Pharmacol Sci 19:2132–2139

    PubMed  Google Scholar 

  36. Kuduban O, Mazlumoglu MR, Kuduban SD et al (2016) The effect of hippophae rhamnoides extract on oral mucositis induced in rats with methotrexate. J Appl Oral Sci 24:423–430. https://doi.org/10.1590/1678-775720160139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jhundoo HD, Siefen T, Liang A et al (2020) Anti-inflammatory activity of chitosan and 5-amino salicylic acid combinations in experimental colitis. Pharmaceutics 12:1–16. https://doi.org/10.3390/PHARMACEUTICS12111038

    Article  Google Scholar 

  38. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174. https://doi.org/10.1038/NRC745

    Article  CAS  PubMed  Google Scholar 

  39. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626. https://doi.org/10.1083/jcb.124.4.619

    Article  CAS  PubMed  Google Scholar 

  40. Bergers G, Coussens LM (2000) Extrinsic regulators of epithelial tumor progression: metalloproteinases. Curr Opin Genet Dev 10:120–127. https://doi.org/10.1016/S0959-437X(99)00043-X

    Article  CAS  PubMed  Google Scholar 

  41. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133. https://doi.org/10.1101/gad.815400

    Article  CAS  PubMed  Google Scholar 

  42. Häyrinen-Immonen R, Sorsa T, Nordström D et al (1993) Collagenase and stromelysin in recurrent aphthous ulcers (RAU). Int J Oral Maxillofac Surg 22:46–49. https://doi.org/10.1016/S0901-5027(05)80357-1

    Article  PubMed  Google Scholar 

  43. Mazzarella N, Femiano F, Gombos F et al (2006) Matrix metalloproteinase gene expression in oral lichen planus: erosive vs. reticular forms. J Eur Acad Dermatol Venereol 20:953–957. https://doi.org/10.1111/j.1468-3083.2006.01693.x

    Article  CAS  PubMed  Google Scholar 

  44. Said S, Golitz L (2011) Vesiculobullous eruptions of the oral cavity. Otolaryngol Clin North Am 44:133–160. https://doi.org/10.1016/J.OTC.2010.09.005

    Article  PubMed  Google Scholar 

  45. Worswick S, Cotliar J (2011) Stevens-Johnson syndrome and toxic epidermal necrolysis: a review of treatment options. Dermatol Ther 24:207–218. https://doi.org/10.1111/J.1529-8019.2011.01396.X

    Article  PubMed  Google Scholar 

  46. Mariadoss AVA, Saravanakumar K, Sathiyaseelan A et al (2021) Smart drug delivery of p-Coumaric acid loaded aptamer conjugated starch nanoparticles for effective triple-negative breast cancer therapy. Int J Biol Macromol 195:22–29. https://doi.org/10.1016/J.IJBIOMAC.2021.11.170

    Article  PubMed  Google Scholar 

  47. Abo-Haded HM, Elkablawy MA, Al-Johani Z et al (2017) Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity. PLoS One 12. https://doi.org/10.1371/JOURNAL.PONE.0174295

  48. Helal MG, Said E (2020) Tranilast attenuates methotrexate-induced renal and hepatic toxicities: role of apoptosis-induced tissue proliferation. J Biochem Mol Toxicol 34. https://doi.org/10.1002/JBT.22466

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by KB, AA, SS, HO and AOŞ. The first draft of the manuscript was written by KB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kani Bilginaylar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the Near East University Local Animal Experiments Ethics Committee on 17/04/2020 no: 2020/111.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilginaylar, K., Aykac, A., Sayiner, S. et al. Evaluation of the antiapoptotic and anti-inflammatory properties of chitosan in methotrexate-induced oral mucositis in rats. Mol Biol Rep 49, 3237–3245 (2022). https://doi.org/10.1007/s11033-022-07158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07158-x

Keywords

Navigation