Log in

Atopic dermatitis: molecular, cellular, and clinical aspects

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Atopic dermatitis (AD) is a complicated, inflammatory skin disease, which numerous genetic and environmental factors play roles in its development. AD is categorized into different phenotypes and stages, although they are mostly similar in their pathophysiological aspects. Immune response alterations and structural distortions of the skin-barrier layer are evident in AD patients. Genetic makeup, lifestyle, and environment are also significantly involved in contextual factors. Genes involved in AD-susceptibility, including filaggrin and natural moisturizing, cause considerable structural modifications in the skin's lipid bilayer and cornified envelope. Additionally, the skin's decreased integrity and altered structure are accompanied by biochemical changes in the normal skin microflora’s dysbiosis. The dynamic immunological responses, genetic susceptibilities, and structural modifications associated with AD's pathophysiology will be extensively discussed in this review, each according to the latest achievements and findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Eichenfield LF et al (2014) Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatolgy 71(1):116–132

    Google Scholar 

  2. Larsen FS, Hanifin J (2002) Epidemiology of atopic dermatitis. Immunol Allergy Clin N Am 22(1):1–24

    Google Scholar 

  3. Irvine AD, McLean WI, Leung DY (2011) Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365(14):1315–1327

    CAS  PubMed  Google Scholar 

  4. Asad S et al (2016) The tight junction gene Claudin-1 is associated with atopic dermatitis among Ethiopians. J Eur Acad Dermatol Venereol 30(11):1939–1941

    CAS  PubMed  Google Scholar 

  5. Persikov A et al (2010) Changes in the ceramide profile of atopic dermatitis patients. J Invest Dermatol 130:2511–2514

    Google Scholar 

  6. Bieber T et al (2017) Clinical phenotypes and endophenotypes of atopic dermatitis: where are we, and where should we go? J Allergy Clin Immunol 139(4):S58–S64

    PubMed  Google Scholar 

  7. Yamaguchi J et al (2009) Quantitative analysis of nerve growth factor (NGF) in the atopic dermatitis and psoriasis horny layer and effect of treatment on NGF in atopic dermatitis. J Dermatol Sci 53(1):48–54

    CAS  PubMed  Google Scholar 

  8. Guo Y et al (2019) Phenotypic analysis of atopic dermatitis in children aged 1–12 months: elaboration of novel diagnostic criteria for infants in China and estimation of prevalence. J Eur Acad Dermatol Venereol 33(8):1569–1576

    CAS  PubMed  Google Scholar 

  9. Abuabara K et al (2018) The prevalence of atopic dermatitis beyond childhood: a systematic review and meta-analysis of longitudinal studies. Allergy 73(3):696–704

    CAS  PubMed  Google Scholar 

  10. Hook K, Warshaw E (2013) Clinical dermatology. McGraw Hill, New York, p 47

    Google Scholar 

  11. Wang X et al (2017) Prevalence and clinical features of adult atopic dermatitis in tertiary hospitals of China. Medicine 96(11):e6317

    PubMed  PubMed Central  Google Scholar 

  12. Kolarsick PA, Kolarsick MA, Goodwin C (2011) Anatomy and physiology of the skin. J Dermatol Nurs Assoc 3(4):203–213

    Google Scholar 

  13. Eyerich S et al (2018) Cutaneous barriers and skin immunity: differentiating a connected network. Trends Immunol 39(4):315–327

    CAS  PubMed  Google Scholar 

  14. Yousef H, Alhajj M, Sharma S (2017) Anatomy, skin (integument), epidermis. StatPearls Publishing LLC, Treasure Island

    Google Scholar 

  15. Drislane C, Irvine AD (2020) The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy Asthma Immunol 124(1):36–43

    CAS  PubMed  Google Scholar 

  16. Wertz P (2018) Epidermal lamellar granules. Skin Pharmacol Physiol 31(5):262–268

    CAS  PubMed  Google Scholar 

  17. Brodell LA, Rosenthal KS (2008) Skin structure and function: The body’s primary defense against infection. Infect Dis Clin Pract 16(2):113–117

    Google Scholar 

  18. Sumpter TL, Balmert SC, Kaplan DH (2019) Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight 4(1):e123947

    PubMed Central  Google Scholar 

  19. Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12(4):390–401

    PubMed  Google Scholar 

  20. Lai-Cheong JE, McGrath JA (2013) Structure and function of skin, hair and nails. Medicine 41(6):317–320

    Google Scholar 

  21. van Smeden J, Bouwstra JA (2016) Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr Probl Dermatol 49:8–26. https://doi.org/10.1159/000441540

    Article  PubMed  Google Scholar 

  22. Elias PM, Wakefield JS (2014) Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis. J Allergy Clin Immunol 134(4):781-791.e1

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jensen J-M et al (2004) Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J Invest Dermatol 122(6):1423–1431

    CAS  PubMed  Google Scholar 

  24. Sawada E et al (2012) Th1 cytokines accentuate but Th2 cytokines attenuate ceramide production in the stratum corneum of human epidermal equivalents: an implication for the disrupted barrier mechanism in atopic dermatitis. J Dermatol Sci 68(1):25–35

    CAS  PubMed  Google Scholar 

  25. Park Y-H et al (2012) Decrease of ceramides with very long-chain fatty acids and downregulation of elongases in a murine atopic dermatitis model. J Invest Dermatol 132(2):476

    CAS  PubMed  Google Scholar 

  26. Tawada C et al (2014) Interferon-γ decreases ceramides with long-chain fatty acids: possible involvement in atopic dermatitis and psoriasis. J Invest Dermatol 134(3):712–718

    CAS  PubMed  Google Scholar 

  27. Kim JE et al (2016) Molecular mechanisms of cutaneous inflammatory disorder: atopic dermatitis. Int J Mol Sci 17(8):1234

    PubMed Central  Google Scholar 

  28. Trzeciak M et al (2017) Altered expression of genes encoding cornulin and repetin in atopic dermatitis. Int Arch Allergy Immunol 172(1):11–19

    CAS  PubMed  Google Scholar 

  29. McAleer MA, Irvine AD (2013) The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol 131(2):280–291

    CAS  PubMed  Google Scholar 

  30. Pendaries V et al (2015) In a three-dimensional reconstructed human epidermis filaggrin-2 is essential for proper cornification. Cell Death Disease 6(2):e1656

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Henderson J et al (2008) The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J Allergy Clin Immunol 121(4):872-877.e9

    CAS  PubMed  Google Scholar 

  32. Peng W, Novak N (2015) Pathogenesis of atopic dermatitis. Clin Exp Allergy 45(3):566–574

    CAS  PubMed  Google Scholar 

  33. Meng L et al (2014) Filaggrin gene mutation c. 3321delA is associated with various clinical features of atopic dermatitis in the Chinese Han population. PLoS ONE 9(5):e98235

    PubMed  PubMed Central  Google Scholar 

  34. Kezic S et al (2012) Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol 129(4):1031-1039.e1

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Savinko T et al (2012) IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Invest Dermatol 132(5):1392–1400

    CAS  PubMed  Google Scholar 

  36. Tamagawa-Mineoka R et al (2014) Increased serum levels of interleukin 33 in patients with atopic dermatitis. J Am Acad Dermatol 70(5):882–888

    CAS  PubMed  Google Scholar 

  37. Lee SH, Jeong SK, Ahn SK (2006) An update of the defensive barrier function of skin. Yonsei Med J 47(3):293–306

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee H-J, Lee S-H (2014) Epidermal permeability barrier defects and barrier repair therapy in atopic dermatitis. Allergy Asthma Immunol Res 6(4):276–287

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Miajlovic H et al (2010) Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol 126(6):1184-1190.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Deleuran M et al (2012) IL-25 induces both inflammation and skin barrier dysfunction in atopic dermatitis. Chem Immunol Allergy 96:45–49

    CAS  PubMed  Google Scholar 

  41. Kim BE et al (2011) TNF-α downregulates filaggrin and loricrin through c-Jun N-terminal kinase: role for TNF-α antagonists to improve skin barrier. J Invest Dermatol 131(6):1272–1279

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Danby S, Cork M (2013) The effects of pimecrolimus on the innate immune response in atopic dermatitis. Br J Dermatol 168(2):235–236

    CAS  PubMed  Google Scholar 

  43. Brandner J et al (2006) Tight junction proteins in the skin. Skin Pharmacol Physiol 19(2):71–77

    CAS  PubMed  Google Scholar 

  44. Yokouchi M et al (2015) Epidermal tight junction barrier function is altered by skin inflammation, but not by filaggrin-deficient stratum corneum. J Dermatol Sci 77(1):28–36

    CAS  PubMed  Google Scholar 

  45. De Benedetto A et al (2011) Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 127(3):773-786.e7

    PubMed  Google Scholar 

  46. Tokumasu R et al (2016) Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis. Proc Natl Acad Sci USA 113(28):E4061–E4068

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Günzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93(2):525–569

    PubMed  PubMed Central  Google Scholar 

  48. Gruber R et al (2015) Diverse regulation of claudin-1 and claudin-4 in atopic dermatitis. Am J Pathol 185(10):2777–2789

    CAS  PubMed  Google Scholar 

  49. Yuki T et al (2016) Impaired tight junctions in atopic dermatitis skin and in a skin-equivalent model treated with interleukin-17. PLoS ONE 11(9):e0161759

    PubMed  PubMed Central  Google Scholar 

  50. Esaki H et al (2015) Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. J Allergy Clin Immunol 135(1):153–163

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Batista D et al (2015) Profile of skin barrier proteins (filaggrin, claudins 1 and 4) and Th1/Th2/Th17 cytokines in adults with atopic dermatitis. J Eur Acad Dermatol Venereol 29(6):1091–1095

    CAS  PubMed  Google Scholar 

  52. Lee U et al (2017) Atopic dermatitis is associated with reduced corneodesmosin expression: role of cytokine modulation and effects on viral penetration. Br J Dermatol 176(2):537–540

    CAS  PubMed  Google Scholar 

  53. De Benedetto A et al (2011) Reductions in claudin-1 may enhance susceptibility to herpes simplex virus 1 infections in atopic dermatitis. J Allergy Clin Immunol 128(1):242-246.e5

    PubMed  PubMed Central  Google Scholar 

  54. Bäsler K et al (2017) Biphasic influence of Staphylococcus aureus on human epidermal tight junctions. Ann N Y Acad Sci 1405(1):53–70

    PubMed  Google Scholar 

  55. Yuki T et al (2011) Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol 187(6):3230–3237

    CAS  PubMed  Google Scholar 

  56. Kuo I-H et al (2013) Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J Invest Dermatol 133(4):988–998

    CAS  PubMed  Google Scholar 

  57. Kubo A et al (2009) External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med 206(13):2937–2946

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Murthy A et al (2012) Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. Immunity 36(1):105–119

    CAS  PubMed  Google Scholar 

  59. Melnik BC (2015) The potential role of impaired notch signalling in atopic dermatitis. Acta Derm Venereol 95(1):5–13

    CAS  PubMed  Google Scholar 

  60. Murota H et al (2018) Sweat in the pathogenesis of atopic dermatitis. Allergol Int 67(4):455–459

    PubMed  Google Scholar 

  61. Murota H et al (2019) Why does sweat lead to the development of itch in atopic dermatitis? Exp Dermatol 28(12):1416–1421

    CAS  PubMed  Google Scholar 

  62. Hendricks AJ et al (2018) Sweat mechanisms and dysfunctions in atopic dermatitis. J Dermatol Sci 89(2):105–111

    CAS  PubMed  Google Scholar 

  63. Yamaga K et al (2018) Claudin-3 loss causes leakage of sweat from the sweat gland to contribute to the pathogenesis of atopic dermatitis. J Invest Dermatol 138(6):1279–1287

    CAS  PubMed  Google Scholar 

  64. Igawa S et al (2017) Incomplete KLK7 secretion and upregulated LEKTI expression underlie hyperkeratotic stratum corneum in atopic dermatitis. J Invest Dermatol 137(2):449–456

    CAS  PubMed  Google Scholar 

  65. Morizane S et al (2012) Th2 cytokines increase kallikrein 7 expression and function in atopic dermatitis. J Allergy Clin Immunol 130(1):259

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee SE, Jeong SK, Lee SH (2010) Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei Med J 51(6):808–822

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jang H et al (2016) Skin pH is the master switch of kallikrein 5-mediated skin barrier destruction in a murine atopic dermatitis model. J Invest Dermatol 136(1):127–135

    CAS  PubMed  Google Scholar 

  68. Hvid M et al (2011) Regulation of caspase 14 expression in keratinocytes by inflammatory cytokines—a possible link between reduced skin barrier function and inflammation? Exp Dermatol 20(8):633–636

    CAS  PubMed  Google Scholar 

  69. Jung M et al (2014) Pyrrolidone carboxylic acid levels or caspase-14 expression in the corneocytes of lesional skin correlates with clinical severity, skin barrier function and lesional inflammation in atopic dermatitis. J Dermatol Sci 76(3):231–239

    CAS  PubMed  Google Scholar 

  70. Fortugno P et al (2012) The 420K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis. Hum Mol Genet 21(19):4187–4200

    CAS  PubMed  Google Scholar 

  71. Deraison C et al (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18(9):3607–3619

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Thawer-Esmail F et al (2014) South African amaXhosa patients with atopic dermatitis have decreased levels of filaggrin breakdown products but no loss-of-function mutations in filaggrin. J Allergy Clin Immunol 133(1):280

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kezic S et al (2011) Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy 66(7):934–940

    CAS  PubMed  Google Scholar 

  74. Sugawara T et al (2012) Decreased lactate and potassium levels in natural moisturizing factor from the stratum corneum of mild atopic dermatitis patients are involved with the reduced hydration state. J Dermatol Sci 66(2):154–159

    CAS  PubMed  Google Scholar 

  75. Pellerin L et al (2013) Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin. J Allergy Clin Immunol 131(4):1094–1102

    CAS  PubMed  Google Scholar 

  76. Elias PM, Hatano Y, Williams ML (2008) Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol 121(6):1337–1343

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Moy AP et al (2015) Immunologic overlap of helper T-cell subtypes 17 and 22 in erythrodermic psoriasis and atopic dermatitis. JAMA Dermatol 151(7):753–760

    PubMed  Google Scholar 

  78. Howell MD et al (2009) Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 124(3):R7–R12

    CAS  PubMed  Google Scholar 

  79. Kim BE et al (2008) Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol 126(3):332–337

    CAS  PubMed  Google Scholar 

  80. Ziegler SF (2012) Thymic stromal lymphopoietin and allergic disease. J Allergy Clin Immunol 130(4):845–852

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Raap U et al (2012) IL-31 significantly correlates with disease activity and Th2 cytokine levels in children with atopic dermatitis. Pediatr Allergy Immunol 23(3):285–288

    PubMed  Google Scholar 

  82. Cornelissen C et al (2012) IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol 129(2):426-433.e8

    CAS  PubMed  Google Scholar 

  83. Danso MO et al (2014) TNF-α and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. J Invest Dermatol 134(7):1941–1950

    CAS  PubMed  Google Scholar 

  84. Yamanaka K-I, Mizutani H (2011) The role of cytokines/chemokines in the pathogenesis of atopic dermatitis. Curr Probl Dermatol 41:80–92

    CAS  PubMed  Google Scholar 

  85. Mu Z et al (2014) Molecular biology of atopic dermatitis. Clin Rev Allergy Immunol 47(2):193–218

    CAS  PubMed  Google Scholar 

  86. Rebane A et al (2012) Mechanisms of IFN-γ-induced apoptosis of human skin keratinocytes in patients with atopic dermatitis. J Allergy Clin Immunol 129(5):1297–1306

    CAS  PubMed  Google Scholar 

  87. Eyerich K et al (2009) IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response. J Allergy Clin Immunol 123(1):59-66e.4

    CAS  PubMed  Google Scholar 

  88. Noda S et al (2015) The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased T H 17 polarization. J Allergy Clin Immunol 136(5):1254–1264

    CAS  PubMed  Google Scholar 

  89. Czarnowicki T et al (2015) Severe atopic dermatitis is characterized by selective expansion of circulating T H 2/T C 2 and T H 22/T C 22, but not T H 17/T C 17, cells within the skin-homing T-cell population. J Allergy Clin Immunol 136(1):104-115.e7

    CAS  PubMed  Google Scholar 

  90. Kamijo H et al (2020) Increased IL-26 expression promotes T helper type 17-and T helper type 2-associated cytokine production by keratinocytes in atopic dermatitis. J Invest Dermatol 140(3):636-644.e2

    CAS  PubMed  Google Scholar 

  91. Czarnowicki T et al (2015) Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA) + TH2/TH1 cell imbalance, whereas adults acquire CLA + TH22/TC22 cell subsets. J Allergy Clin Immunol 136(4):941-951.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Niebuhr M et al (2014) Staphylococcal exotoxins induce interleukin 22 in human Th22 cells. Int Arch Allergy Immunol 165(1):35–39

    CAS  PubMed  Google Scholar 

  93. Jang M et al (2016) The crucial role of IL-22 and its receptor in thymus and activation regulated chemokine production and T-cell migration by house dust mite extract. Exp Dermatol 25(8):598–603

    CAS  PubMed  Google Scholar 

  94. Guilloteau K et al (2010) Skin inflammation induced by the synergistic action of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α recapitulates some features of psoriasis. J Immunol 184(9):5263–5270

    CAS  PubMed  Google Scholar 

  95. Gutowska-Owsiak D et al (2011) Interleukin-22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes. Br J Dermatol 165(3):492–498

    CAS  PubMed  Google Scholar 

  96. Novak N (2012) An update on the role of human dendritic cells in patients with atopic dermatitis. J Allergy Clin Immunol 129(4):879–886

    CAS  PubMed  Google Scholar 

  97. Sato K, Fujita S (2007) Dendritic cells-nature and classification. Allergol Int 56(3):183–191

    PubMed  Google Scholar 

  98. Fujita H et al (2011) Lesional dendritic cells in patients with chronic atopic dermatitis and psoriasis exhibit parallel ability to activate T-cell subsets. J Allergy Clin Immunol 128(3):574-582.e12

    CAS  PubMed  Google Scholar 

  99. Kawakami T et al (2009) Mast cells in atopic dermatitis. Curr Opin Immunol 21(6):666–678

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Theiner G, Gessner A, Lutz MB (2006) The mast cell mediator PGD2 suppresses IL-12 release by dendritic cells leading to Th2 polarized immune responses in vivo. Immunobiology 211(6):463–472

    CAS  PubMed  Google Scholar 

  101. Suto H et al (2006) Mast cell-associated TNF promotes dendritic cell migration. J Immunol 176(7):4102–4112

    CAS  PubMed  Google Scholar 

  102. Nagarkar DR et al (2012) Airway epithelial cells activate T H 2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin. J Allergy Clin Immunol 130(1):225-232.e4

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hu Y et al (2020) Clinical relevance of eosinophils, basophils, serum total IgE level, allergen-specific IgE, and clinical features in atopic dermatitis. J Clin Lab Anal 34(6):e23214

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Simon D, Braathen L, Simon HU (2004) Eosinophils and atopic dermatitis. Allergy 59(6):561–570

    CAS  PubMed  Google Scholar 

  105. Yang D et al (2008) Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205(1):79–90

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kunsleben N et al (2015) IL-31 induces chemotaxis, calcium mobilization, release of reactive oxygen species, and CCL26 in eosinophils, which are capable to release IL-31. J Invest Dermatol 135(7):1908

    CAS  PubMed  Google Scholar 

  107. Spits H, Cupedo T (2012) Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 30:647–675

    CAS  PubMed  Google Scholar 

  108. Saunders SP et al (2016) Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J Allergy Clin Immunol 137(2):482–491

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Roediger B et al (2014) Dermal group 2 innate lymphoid cells in atopic dermatitis and allergy. Curr Opin Immunol 31:108–114

    CAS  PubMed  Google Scholar 

  110. Xue L et al (2014) Prostaglandin D 2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol 133(4):1184–119.e7

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Salimi M et al (2013) A role for IL-25 and IL-33–driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 210(13):2939–2950

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Halim TY et al (2016) Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat Immunol 17(1):57–64

    CAS  PubMed  Google Scholar 

  113. Nakatsuji T et al (2017) Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 9(378):eaah4680

    PubMed  PubMed Central  Google Scholar 

  114. Clausen ML et al (2013) Human β-defensin-2 as a marker for disease severity and skin barrier properties in atopic dermatitis. Br J Dermatol 169(3):587–593

    CAS  PubMed  Google Scholar 

  115. Howell MD et al (2005) Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. J Invest Dermatol 125(4):738–745

    CAS  PubMed  Google Scholar 

  116. Drongelen V et al (2014) Reduced filaggrin expression is accompanied by increased Staphylococcus aureus colonization of epidermal skin models. Clin Exp Allergy 44(12):1515–1524

    PubMed  Google Scholar 

  117. Harder J et al (2010) Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol 130(5):1355–1364

    CAS  PubMed  Google Scholar 

  118. Kanda N, Watanabe S (2012) Increased serum human β-defensin-2 levels in atopic dermatitis: relationship to IL-22 and oncostatin M. Immunobiology 217(4):436–445

    CAS  PubMed  Google Scholar 

  119. Ballardini N et al (2009) Enhanced expression of the antimicrobial peptide LL-37 in lesional skin of adults with atopic eczema. Br J Dermatol 161(1):40–47

    CAS  PubMed  Google Scholar 

  120. Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346(6212):954–959

    CAS  PubMed  Google Scholar 

  121. Findley K et al (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498(7454):367

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen YE, Fischbach MA, Belkaid Y (2018) Skin microbiota-host interactions. Nature 553(7689):427–436

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zeeuwen PL et al (2012) Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol 13(11):R101

    PubMed  PubMed Central  Google Scholar 

  124. Nørreslet LB, Agner T, Clausen M-L (2020) The Skin Microbiome in Inflammatory Skin Diseases. Current Dermatology Reports 9(2):141–151

    Google Scholar 

  125. Sugimoto, K., Staphylococcus aureus vs. Atopic Dermatitis. Journal of Pharmaceutical Microbiology, 2016.

  126. Otto M (2004) Virulence factors of the coagulase-negative staphylococci. Front Biosci 9(1):841–863

    CAS  PubMed  Google Scholar 

  127. Lorz LR, Kim M-Y, Cho JY (2020) Medicinal potential of Panax ginseng and its ginsenosides in atopic dermatitis treatment. J Ginseng Res 44(1):8–13

    PubMed  Google Scholar 

  128. Hong SW et al (2011) Extracellular vesicles derived from staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy 66(3):351–359

    CAS  PubMed  Google Scholar 

  129. Yamazaki Y, Nakamura Y, Nunez G (2017) Role of the microbiota in skin immunity and atopic dermatitis. Allergol Int 66(4):539–544

    CAS  PubMed  Google Scholar 

  130. Byrd, A.L., et al., Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med, 2017. 9(397).

  131. Di Domenico, E.G., et al., Staphylococcus aureus and the Cutaneous Microbiota Biofilms in the Pathogenesis of Atopic Dermatitis. Microorganisms, 2019. 7(9).

  132. Kobayashi T et al (2015) Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 42(4):756–766

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chan JC et al (2018) A Unique Pattern of Staphylococcal Scalded Skin Syndrome-Like Erosions in Patients with Atopic Dermatitis: Dermatitis flammeus. Skinmed 16(5):309–313

    PubMed  Google Scholar 

  134. Yeom M et al (2015) Oral administration of Lactobacillus casei variety rhamnosus partially alleviates TMA-induced atopic dermatitis in mice through improving intestinal microbiota. J Appl Microbiol 119(2):560–570

    CAS  PubMed  Google Scholar 

  135. Wanke I et al (2011) Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J Invest Dermatol 131(2):382–390

    CAS  PubMed  Google Scholar 

  136. Cau, L., et al., Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol. 2021 Mar;147(3):955-966.e16

  137. Kong HH et al (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22(5):850–859

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Myles IA et al (2016) Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight 1(10):e86955

    PubMed Central  Google Scholar 

  139. Jeong DY et al (2020) Pediococcus acidilactici intake decreases the clinical severity of atopic dermatitis along with increasing mucin production and improving the gut microbiome in Nc/Nga mice. Biomed Pharmacother 129:110488

    CAS  PubMed  Google Scholar 

  140. Kim JA et al (2020) Galectin-9 induced by dietary prebiotics regulates immunomodulation to reduce atopic dermatitis symptoms in 1-chloro-2,4-dinitrobenzene (DNCB)-treated NC/Nga mice. J Microbiol Biotechnol 30(9):1343–1354

    CAS  PubMed  Google Scholar 

  141. Jeong K et al (2020) A randomized trial of Lactobacillus rhamnosus IDCC 3201 tyndallizate (RHT3201) for treating atopic dermatitis. Pediatr Allergy Immunol 31(7):783–792

    PubMed  Google Scholar 

  142. Navarro-López V et al (2018) Effect of oral administration of a mixture of probiotic strains on SCORAD index and use of topical steroids in young patients with moderate atopic dermatitis: a randomized clinical trial. JAMA Dermatol 154(1):37–43

    PubMed  Google Scholar 

  143. Huang R et al (2017) Probiotics for the treatment of atopic dermatitis in children: a systematic review and meta-analysis of randomized controlled trials. Front Cell Infect Microbiol 7:392

    PubMed  PubMed Central  Google Scholar 

  144. Hendricks AJ, Mills BW, Shi VY (2019) Skin bacterial transplant in atopic dermatitis: knowns, unknowns and emerging trends. J Dermatol Sci 95(2):56–61

    CAS  PubMed  Google Scholar 

  145. Litus O et al (2019) Efficacy of probiotic therapy on atopic dermatitis in adults depends on the C-159T polymorphism of the CD14 receptor gene—a pilot study. Open Access Maced J Med Sci 7(7):1053–1058

    PubMed  PubMed Central  Google Scholar 

  146. Chng KR et al (2016) Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol 1(9):16106

    CAS  PubMed  Google Scholar 

  147. Kim MH et al (2017) A metagenomic analysis provides a culture-independent pathogen detection for atopic dermatitis. Allergy Asthma Immunol Res 9(5):453–461

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Catherine-Mack-Correa M, Nebus J (2012) Management of patients with atopic dermatitis: the role of emollient therapy. Dermatol Res Pract 2012:836931

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Fleming P et al (2020) Diagnosis and management of atopic dermatitis for primary care providers. J Am Board Fam Med 33(4):626–635

    PubMed  Google Scholar 

  150. Johnson BB et al (2019) Treatment-resistant atopic dermatitis: challenges and solutions. Clin Cosmet Investig Dermatol 12:181

    PubMed  PubMed Central  Google Scholar 

  151. Heilskov S, Deleuran MS, Vestergaard C (2020) Immunosuppressive and immunomodulating therapy for atopic dermatitis in pregnancy: an appraisal of the literature. Dermatol Ther 10:1215–1228

    Google Scholar 

  152. Vestergaard C et al (2019) European task force on atopic dermatitis position paper: treatment of parental atopic dermatitis during preconception, pregnancy and lactation period. J Eur Acad Dermatol Venereol 33(9):1644–1659

    CAS  PubMed  Google Scholar 

  153. Fishbein AB et al (2020) Update on atopic dermatitis: diagnosis, severity assessment, and treatment selection. J Allergy Clin Immunol Pract 8(1):91–101

    PubMed  Google Scholar 

  154. Suga H, Sato S (2019) Novel topical and systemic therapies in atopic dermatitis. Immunological medicine 42(2):84–93

    PubMed  Google Scholar 

  155. DeLouise LA (2012) Applications of nanotechnology in dermatology. J Investig Dermatol 132(3):964–975

    CAS  PubMed  Google Scholar 

  156. Akhtar N, Verma A, Pathak K (2017) Exploring preclinical and clinical effectiveness of nanoformulations in the treatment of atopic dermatitis: safety aspects and patent reviews. Bull Fac Pharm Cairo Univ 55(1):1–10

    Google Scholar 

  157. Yu K et al (2018) Tacrolimus nanoparticles based on chitosan combined with nicotinamide: enhancing percutaneous delivery and treatment efficacy for atopic dermatitis and reducing dose. Int J Nanomed 13:129

    CAS  Google Scholar 

  158. Eroğlu İ et al (2016) Effective topical delivery systems for corticosteroids: dermatological and histological evaluations. Drug Deliv 23(5):1502–1513

    PubMed  Google Scholar 

  159. Viegas JSR et al (2020) Nanostructured lipid carrier co-delivering tacrolimus and TNF-α siRNA as an innovate approach to psoriasis. Drug Deliv Transl Res 10(3):646–660

    CAS  PubMed  Google Scholar 

Download references

Funding

No fund.

Author information

Authors and Affiliations

Authors

Contributions

JS participated in the design of the study and wrote the manuscript. AA and ZS performed the literature search. SMD and MK performed the data analysis. AE and SAJ conceived of the study, participated in its design and coordination, and helped draft the manuscript. MK critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sadegh Azimzadeh Jamalkandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimian, J., Salehi, Z., Ahmadi, A. et al. Atopic dermatitis: molecular, cellular, and clinical aspects. Mol Biol Rep 49, 3333–3348 (2022). https://doi.org/10.1007/s11033-021-07081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07081-7

Keywords

Navigation