Log in

Identification and molecular profiling of a novel homolog of cystatin C from rock bream (Oplegnathus fasciatus) evidencing its transcriptional sensitivity to pathogen infections

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cystatins are reversible inhibitors of cysteine proteases which show an omnipresent distribution in the life on earth. Although, cystatins with mammalian origin were well characterized and their roles in physiology were reported in details, those from teleostean origin are still underrepresented in literature. However, role of cystatins in fish physiology and immune defense is highlighted in few recent reports. In this study, a cystatin C holmologue from rock bream (Oplegnathus fasciatus); termed RbCytC was identified and molecularly characterized. The complete coding sequence of RbCytC was 387 bp in length, which codes for a polypeptide with 129 amino acids, including a signal peptide of 19 amino acids. The consensus cystatin family signatures including a G residue, turning up towards the N-terminus region, QVVAG motif, locating at the middle of the sequence and the PW motif at the c terminal region was found to be well conserved in RbCytC. Phylogenetic analysis using different cystatin counterparts affirmed the close evolutionary relationship of RbCytC with its teleostan homologs which belong to family 2 cystatins. The predicted molecular model of RbCytC resembled most of the structural features of empirically elucidated tertiary structures for chicken egg white cystatin. According to the qPCR assays, RbCytC showed detectable expression in all fish tissues used in the experiment, with markedly pronounced expression level in liver. Moreover, its basal mRNA expression was up-regulated in liver and spleen tissues by experimental rock bream iridovirus infection, whereas down regulated in the same tissues, post live Edwardsiella tarda injection. Collectively, outcomes of our study validate the structural homology of RbCytC with known cystatin C similitudes, especially those of teleosts and suggest its potential roles in proteolytic processes of rock bream physiology as well as in host immune defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Turk V, Bode W (1991) The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285:213–219

    Article  CAS  PubMed  Google Scholar 

  2. Ochieng J, Chaudhuri G (2010) Cystatin superfamily. J Health Care Poor Underserved 21:51–70. https://doi.org/10.1353/hpu.0.0257

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cornwall GA, Hsia N (2003) A new subgroup of the family 2 cystatins. Mol Cell Endocrinol 200:1–8

    Article  CAS  PubMed  Google Scholar 

  4. Verdot L, Lalmanach G, Vercruysse V et al (1999) Chicken cystatin stimulates nitric oxide release from interferon-γ- activated mouse peritoneal macrophages via cytokine synthesis. Eur J Biochem 266:1111–1117. https://doi.org/10.1046/j.1432-1327.1999.00964.x

    Article  CAS  PubMed  Google Scholar 

  5. Verdot L, Lalmanach G, Vercruysse V et al (1996) Cystatins up-regulate nitric oxide release from interferon-γ-activated mouse peritoneal macrophages. J Biol Chem 271:28077–28081. https://doi.org/10.1074/jbc.271.45.28077

    Article  CAS  PubMed  Google Scholar 

  6. Björck L, Grubb A, Kjellén L (1990) Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. J Virol 64:941–943. https://doi.org/10.1128/jvi.64.2.941-943.1990

    Article  PubMed  PubMed Central  Google Scholar 

  7. Collins AR, Grubb A (1998) Cystatin D, a natural salivary cysteine protease inhibitor, inhibits coronavirus replication at its physiologic concentration. Oral Microbiol Immunol 13:59–61. https://doi.org/10.1111/j.1399-302X.1998.tb00753.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li S, Ao J, Chen X (2009) Molecular and functional characterization of a cystatin analogue in large yellow croaker (Pseudosciaena crocea). Mol Immunol 46:1638–1646. https://doi.org/10.1016/j.molimm.2009.02.027

    Article  CAS  PubMed  Google Scholar 

  9. Yamashita M, Konagaya S (1996) Molecular cloning and gene expression of chum salmon cystatin. J Biochem 120:483–487. https://doi.org/10.1093/oxfordjournals.jbchem.a021438

    Article  CAS  PubMed  Google Scholar 

  10. Yu H, Xu X, Zhang Q, Wang X (2019) Molecular characterization, expression and functional analysis of cystatin C in Japanese flounder (Paralichthys olivaceus). Fish Shellfish Immunol 86:695–701. https://doi.org/10.1016/j.fsi.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  11. Wei S, Cai J, Wang S et al (2019) Functional characterization of Cystatin C in orange-spotted grouper, Epinephelus coioides. Dev Comp Immunol 96:37–46. https://doi.org/10.1016/j.dci.2019.02.015

    Article  CAS  PubMed  Google Scholar 

  12. Jung MH, Nikapitiya C, Vinay TN et al (2017) Rock bream iridovirus (RBIV) replication in rock bream (Oplegnathus fasciatus) exposed for different time periods to susceptible water temperatures. Fish Shellfish Immunol 70:731–735. https://doi.org/10.1016/j.fsi.2017.09.038

    Article  PubMed  Google Scholar 

  13. Park S II (2009) Disease control in Korean aquaculture. Fish Pathol 44:19–23. https://doi.org/10.3147/jsfp.44.19

    Article  Google Scholar 

  14. Whang I, Lee Y, Kim H et al (2011) Characterization and expression analysis of the myeloid differentiation factor 88 (MyD88) in rock bream Oplegnathus fasciatus. Mol Biol Rep 38:3911–3920. https://doi.org/10.1007/s11033-010-0507-2

    Article  CAS  PubMed  Google Scholar 

  15. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang J, Zhang Y (2015) I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181. https://doi.org/10.1093/nar/gkv342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-9-40

    Article  PubMed  PubMed Central  Google Scholar 

  19. Whang I, Lee Y, Lee S et al (2011) Characterization and expression analysis of a goose-type lysozyme from the rock bream Oplegnathus fasciatus, and antimicrobial activity of its recombinant protein. Fish Shellfish Immunol 30:532–542. https://doi.org/10.1016/j.fsi.2010.11.025

    Article  CAS  PubMed  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  21. Bode W, Engh R, Musil D et al (1988) The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J 7:2593–2599. https://doi.org/10.1002/j.1460-2075.1988.tb03109.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dieckmann T, Mitschang L, Hofmann M et al (1993) The structures of native phosphorylated chicken cystatin and of a recombinant unphosphorylated variant in solution. J Mol Biol 234:1048–1059. https://doi.org/10.1006/jmbi.1993.1658

    Article  CAS  PubMed  Google Scholar 

  23. Li F, An H, Seymour TA et al (1998) Molecular cloning, sequence analysis and expression distribution of rainbow trout (Oncorhynchus mykiss) cystatin C. Comp Biochem Physiol - B Biochem Mol Biol 121:135–143. https://doi.org/10.1016/S0305-0491(98)10074-3

    Article  CAS  PubMed  Google Scholar 

  24. Song W, Jiang KJ, Zhang FY et al (2016) Molecular cloning and gene expression analysis of cystatin C-like proteins in spinyhead croaker Collichthys lucidus. Genet Mol Res. https://doi.org/10.4238/gmr.15017417

    Article  PubMed  Google Scholar 

  25. van de Pol I, Flik G, Gorissen M (2017) Comparative physiology of energy metabolism: Fishing for endocrine signals in the early vertebrate pool. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2017.00036

    Article  Google Scholar 

  26. Brusle J, Anadon GG (1996) The structure and function of fish liver. In: Munshi JSD, Dutta HM (eds) Fish Morphology. Boston, MA, pp 77–93

  27. Causey DR, Pohl MAN, Stead DA et al (2018) High-throughput proteomic profiling of the fish liver following bacterial infection. BMC Genomics. https://doi.org/10.1186/s12864-018-5092-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bandivdekar A, Vernekar V, Velhal S (2015) Evaluation of cystatin C activities against HIV. Indian J Med Res 141:423. https://doi.org/10.4103/0971-5916.159282

    Article  PubMed  PubMed Central  Google Scholar 

  29. Behairy BE, Saber MA, Elhenawy IA et al (2012) Serum cystatin C correlates negatively with viral load in treatment-naïve children with chronic hepatitis C. J Pediatr Gastroenterol Nutr 54:364–368. https://doi.org/10.1097/MPG.0b013e31823e98c2

    Article  CAS  PubMed  Google Scholar 

  30. Gren ST, Janciauskiene S, Sandeep S et al (2016) The protease inhibitor cystatin C down-regulates the release of IL-β and TNF-α in lipopolysaccharide activated monocytes. J Leukoc Biol 100:811–822. https://doi.org/10.1189/jlb.5a0415-174r

    Article  CAS  PubMed  Google Scholar 

  31. Van Muiswinkel WB, Lamers CHJ, Rombout JHWM (1991) Structural and functional aspects of the spleen in bony fish. Res Immunol 142:362–366. https://doi.org/10.1016/0923-2494(91)90093-X

    Article  PubMed  Google Scholar 

  32. Möller AM, Korytář T, Köllner B et al (2014) The teleostean liver as an immunological organ: intrahepatic immune cells (IHICs) in healthy and benzo[a]pyrene challenged rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 46:518–529. https://doi.org/10.1016/j.dci.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  33. Korant B, Towatari T, Kelley M et al (1988) Interactions between a viral protease and cystatins. Biol Chem Hoppe Seyler 369:281–286

    CAS  PubMed  Google Scholar 

  34. Zi M, Xu Y (2018) Involvement of cystatin C in immunity and apoptosis. Immunol Lett 196:80–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Y, Ding Y, Li X, Wu X (2015) Cystatin C is a disease-associated protein subject to multiple regulation. Immunol Cell Biol 93:442–451. https://doi.org/10.1038/icb.2014.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim JW, Il PC, Hwang SD et al (2013) Molecular characterisation and expression analysis of the cathepsin H gene fromrock bream (Oplegnathus fasciatus). Fish Shellfish Immunol 35:188–194. https://doi.org/10.1016/j.fsi.2013.04.016

    Article  CAS  PubMed  Google Scholar 

  37. Whang I, De Zoysa M, Nikapitiya C et al (2011) Molecular characterization and expression analysis of Cathepsin B and L cysteine proteases from rock bream (Oplegnathus fasciatus). Fish Shellfish Immunol 30:763–772. https://doi.org/10.1016/j.fsi.2010.12.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research partially represents the project titled ‘Fish Vaccine Research Center’, funded by the Ministry of Oceans and Fisheries, Korea, and was supported by the Basic Science Research Program implemented by National Research Foundation of Korea with the funds provided by the Ministry of Education (2019R1A6A1A03033553).

Author information

Authors and Affiliations

Authors

Contributions

Don Anushka Sandaruwan Elvitigala: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing- original draft. Jehee Lee: Conceptualization, Funding acquisition, Project administration, Writing- review and editing.

Corresponding authors

Correspondence to Don Anushka Sandaruwan Elvitigala or Jehee Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Fish care and challenge experiments were reviewed and approved by Animal Care and Use Committee of Jeju National University.

Consent to participate

Not Applicable.

Consent to publish

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elvitigala, D.A.S., Lee, J. Identification and molecular profiling of a novel homolog of cystatin C from rock bream (Oplegnathus fasciatus) evidencing its transcriptional sensitivity to pathogen infections. Mol Biol Rep 48, 4933–4942 (2021). https://doi.org/10.1007/s11033-021-06415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06415-9

Keywords

Navigation