Log in

The enzymology of human eicosanoid pathways: the lipoxygenase branches

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Eicosanoids are short-lived derivatives of polyunsaturated fatty acids that serve as autocrine and paracrine signaling molecules. They are involved numerous biological processes of both the well state and disease states. A thorough understanding of the progression the disease state and homeostasis of the well state requires a complete evaluation of the systems involved. This review examines the enzymology for the enzymes involved in the production of eicosanoids along the lipoxygenase branches of the eicosanoid pathways with particular emphasis on those derived from arachidonic acid. The enzymatic parameters, protocols to measure them, and proposed catalytic mechanisms are presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682. https://doi.org/10.1074/jbc.274.34.23679

    Article  CAS  PubMed  Google Scholar 

  2. Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:52. https://doi.org/10.3389/fnagi.2015.00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuhn H, Belkner J, Wiesner R, Brash AR (1990) Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. J Biol Chem 265:18351–18361

    CAS  PubMed  Google Scholar 

  4. Takahashi Y, Zhu H, Yoshimoto T (2005) Essential roles of lipoxygenases in LDL oxidation and development of atherosclerosis. Antioxid Redox Signal 7:425–431. https://doi.org/10.1089/ars.2005.7.425

    Article  CAS  PubMed  Google Scholar 

  5. Aldrovandi M, Banthiya S, Meckelmann S, Zhou Y, Heydeck D, O'Donnell VB, Kuhn H (2018) Specific oxygenation of plasma membrane phospholipids by Pseudomonas aeruginosa lipoxygenase induces structural and functional alterations in mammalian cells. Biochim Biophys Acta Mol Cell Biol Lipids 1863:152–164. https://doi.org/10.1016/j.bbalip.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  6. Kühn H, Banthiya S, van Leyen K (2015) Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 1851:308–330. https://doi.org/10.1016/j.bbalip.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  7. Mueller MJ, Wetterholm A, Blomster M, Jörnvall H, Samuelsson B, Haeggström JZ (1995) Leukotriene A4 hydrolase: map** of a henicosapeptide involved in mechanism-based inactivation. Proc Natl Acad Sci USA 92:8383–8387. https://doi.org/10.1073/pnas.92.18.8383

    Article  CAS  PubMed  Google Scholar 

  8. Newcomer ME, Brash AR (2015) The structural basis for specificity in lipoxygenase catalysis. Protein Sci 24:298–309. https://doi.org/10.1002/pro.2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kühn H, Sprecher H, Brash AR (1990) On singular or dual positional specificity of lipoxygenases. The number of chiral products varies with alignment of methylene groups at the active site of the enzyme. J Biol Chem 265:16300–16305

    PubMed  Google Scholar 

  10. Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O'Donnell VB, Kuhn H et al (2010) Molecular enzymology of lipoxygenases. Arch Biochem Biophys 503:161–174. https://doi.org/10.1016/j.abb.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  11. Goloshchapova K, Stehling S, Heydeck D, Blum M, Kuhn H (2018) Functional characterization of a novel arachidonic acid 12S-lipoxygenase in the halotolerant bacterium Myxococcus fulvus exhibiting complex social living patterns. Microbiologyopen 8:e775. https://doi.org/10.1002/mbo3.775

    Article  CAS  Google Scholar 

  12. Horn T, Adel S, Schumann R, Sur S, Kakularam KR, Polamarasetty A et al (2015) Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Prog Lipid Res 57:13–39. https://doi.org/10.1016/j.plipres.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  13. Coffa G, Schneider C, Brash AR (2005) A comprehensive model of positional and stereo control in lipoxygenases. Biochem Biophys Res Commun 338:87–92. https://doi.org/10.1016/j.bbrc.2005.07.185

    Article  CAS  PubMed  Google Scholar 

  14. Rådmark OP (2000) The molecular biology and regulation of 5-lipoxygenase. Am J Respir Crit Care Med 161(2 Pt 2):S11–S15. https://doi.org/10.1164/ajrccm.161.supplement_1.ltta-3

    Article  PubMed  Google Scholar 

  15. Brigelius-Flohé R, Flohé L (2003) Is there a role of glutathione peroxidases in signaling and differentiation? BioFactors 17:93–102. https://doi.org/10.1002/biof.5520170110

    Article  PubMed  Google Scholar 

  16. Li C, Deng X, **e X, Liu Y, Friedmann Angeli JP, Lai L (2018) Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy. Front Pharmacol 9:1120. https://doi.org/10.3389/fphar.2018.01120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rådmark O, Werz O, Steinhilber D, Samuelsson B (2007) 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci 32:332–341. https://doi.org/10.1016/j.tibs.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  18. Straif D, Werz O, Kellner R, Bahr U, Steinhilber D (2000) Glutathione peroxidase-1 but not -4 is involved in the regulation of cellular 5-lipoxygenase activity in monocytic cells. Biochem J 349(Pt 2):455–461. https://doi.org/10.1042/bj3490455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34:145–169. https://doi.org/10.1016/s0891-5849(02)01197-8

    Article  CAS  PubMed  Google Scholar 

  20. Ivanov I, Kuhn H, Heydeck D (2015) Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 573:1–32. https://doi.org/10.1016/j.gene.2015.07.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shang W, Ivanov I, Svergun DI, Borbulevych OY, Aleem AM, Stehling S et al (2011) Probing dimerization and structural flexibility of mammalian lipoxygenases by small-angle X-ray scattering. J Mol Biol 409:654–668. https://doi.org/10.1016/j.jmb.2011.04.035

    Article  CAS  PubMed  Google Scholar 

  22. Nadel JA, Conrad DJ, Ueki IF, Schuster A, Sigal E (1991) Immunocytochemical localization of arachidonate 15-lipoxygenase in erythrocytes, leukocytes, and airway cells. J Clin Invest 87:1139–1145. https://doi.org/10.1172/JCI115110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Izumi T, Raadmark O, Joernvall H, Samuelsson B (1991) Purification of two forms of arachidonate 15-lipoxygenase from human leukocytes. Eur Biochem 202:1231–1238. https://doi.org/10.1111/j.1432-1033.1991.tb16495.x

    Article  CAS  Google Scholar 

  24. Levy BD, Romano M, Chapman HA, ReillyJJ DJ, Serhan CN (1993) Human alveolar macrophages have 15-lipoxygenase and generate 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid and lipoxins. J Clin Invest 92:1572–1579. https://doi.org/10.1172/JCI116738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Conrad DJ, Kuhn H, Mulkins M, Highland E, Sigal E (1992) Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc Natl Acad Sci U S A 89:217–221. https://doi.org/10.1073/pnas.89.1.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bryant RW, Schewe T, Rapoport SM, Bailey JM (1985) Leukotriene formation by a purified reticulocyte lipoxygenase enzyme. Conversion of arachidonic acid and 15-hydroperoxyeicosatetraenoic acid to 14, 15-leukotriene A4. J Biol Chem 260:3548–3555

    CAS  PubMed  Google Scholar 

  27. Recchiuti A, Serhan CN (2012) Pro-resolving lipid mediators (SPMs) and their actions in regulating miRNA in novel resolution circuits in inflammation. Front Immunol 3:298. https://doi.org/10.3389/fimmu.2012.00298

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kutzner L, Goloshchapova K, Heydeck D, Stehling S, Kuhn H, Schebb NH (2017) Mammalian ALOX15 orthologs exhibit pronounced dual positional specificity with docosahexaenoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 1862:666–675. https://doi.org/10.1016/j.bbalip.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  29. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R et al (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36:40–45. https://doi.org/10.1038/ng1285

    Article  PubMed  Google Scholar 

  30. Sigal E, Grunberger D, Craik CS, Caughey GH, Nadel JA (1988) Arachidonate 15-lipoxygenase (omega-6 lipoxygenase) from human leukocytes. Purification and structural homology to other mammalian lipoxygenases. J Biol Chem 263:5328–5332

    CAS  PubMed  Google Scholar 

  31. Gan QF, Browner MF, Sloane DL, Sigal E (1996) Defining the arachidonic acid binding site of human 15-lipoxygenase. Molecular modeling and mutagenesis. J Biol Chem 271:25412–25418. https://doi.org/10.1074/jbc.271.41.25412

    Article  CAS  PubMed  Google Scholar 

  32. Joshi N, Hoobler EK, Perry S, Diaz G, Fox B, Holman TR (2013) Kinetic and structural investigations into the allosteric and pH effect on the substrate specificity of human epithelial 15-lipoxygenase-2. Biochemistry 52:8026–8035. https://doi.org/10.1021/bi4010649

    Article  CAS  PubMed  Google Scholar 

  33. Wecksler AT, Kenyon V, Deschamps JD, Holman TR (2008) Substrate specificity changes for human reticulocyte and epithelial 15-lipoxygenases reveal allosteric product regulation. Biochemistry 47:7364–7375. https://doi.org/10.1021/bi800550n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumarathasan R, Leenen FH (2000) Is ATP a substrate for 15-lipoxygenase? Biochem. Cell Biol 78:87–91. https://doi.org/10.1139/o99-073

    Article  CAS  Google Scholar 

  35. Tang S, Bhatia B, Maldonado CJ, Yang P, Newman RA et al (2002) Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. J Biol Chem 277:16189–16201. https://doi.org/10.1074/jbc.M111936200

    Article  CAS  PubMed  Google Scholar 

  36. Kilty I, Logan A, Vickers PJ (1999) Differential characteristics of human 15-lipoxygenase isozymes and a novel splice variant of 15S-lipoxygenase. Eur J Biochem 266:83–93. https://doi.org/10.1046/j.1432-1327.1999.00818.x

    Article  CAS  PubMed  Google Scholar 

  37. Brash AR, Boeglin WE, Chang MS (1997) Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci USA 94:6148–6152. https://doi.org/10.1073/pnas.94.12.6148

    Article  CAS  PubMed  Google Scholar 

  38. Gregus AM, Dumlao DS, Wei SC, Norris PC, Catella LC, Meyerstein FG et al (2013) Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia. FASEB J 27(5):1939–1949. https://doi.org/10.1096/fj.12-217414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jisaka M, Kim RB, Boeglin WE, Brash AR (2000) Identification of amino acid determinants of the positional specificity of mouse 8S-lipoxygenase and human 15S-lipoxygenase-2. J Biol Chem 275:1287–1293. https://doi.org/10.1074/jbc.275.2.1287

    Article  CAS  PubMed  Google Scholar 

  40. Adel S, Karst F, González-Lafont À, Pekárová M, Saura P, Masgrau L (2016) Evolutionary alteration of ALOX15 specificity optimizes the biosynthesis of antiinflammatory and proresolving lipoxins. Proc Natl Acad Sci USA 113:E4266–E4275. https://doi.org/10.1073/pnas.1604029113

    Article  CAS  PubMed  Google Scholar 

  41. Kühn H, Heydeck D, Brinckman R, Trebus F (1999) Regulation of cellular 15-lipoxygenase activity on pretranslational, translational, and posttranslational levels. Lipids 34:S273–S279. https://doi.org/10.1007/bf02562317

    Article  PubMed  Google Scholar 

  42. Wecksler AT, Jacquot C, van der Donk WA, Holman TR (2009) Mechanistic investigations of human reticulocyte 15- and platelet 12-lipoxygenases with arachidonic acid. Biochemistry 48:6259–6267. https://doi.org/10.1021/bi802332j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Häfner A-K, Cernescu M, Hofmann B, Ermisch M, Hörnig M, Metzner J (2011) Dimerization of human 5-lipoxygenase. Biol Chem 392:1097–1111. https://doi.org/10.1515/BC.2011.200

    Article  PubMed  Google Scholar 

  44. Ochs MJ, Suess B, Steinhilber D (2014) 5-lipoxygenase mRNA and protein isoforms. Basic Clin Pharmacol Toxicol 114:78–82. https://doi.org/10.1111/bcpt.12115

    Article  CAS  PubMed  Google Scholar 

  45. Gilbert NC, Bartlett SG, Waight MT, Neau DB, Boeglin WE, Brash AR et al (2011) The structure of human 5-lipoxygenase. Science 331:217–219. https://doi.org/10.1126/science.1197203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Noguchi M, Miyano M, Matsumoto T (1996) Physiochemical characterization of ATP binding to human 5-lipoxygenase. Lipids 31:367–371. https://doi.org/10.1007/bf02522921

    Article  CAS  PubMed  Google Scholar 

  47. Rouzer CA, Samuelsson B (1987) Reversible, calcium-dependent membrane association of human leukocyte 5-lipoxygenase. Proc Natl Acad Sci USA 84:7393–7397. https://doi.org/10.1073/pnas.84.21.7393

    Article  CAS  PubMed  Google Scholar 

  48. Shimizu T, Rådmark O, Samuelsson B (1984) Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci USA 81:689–693. https://doi.org/10.1073/pnas.81.3.689

    Article  CAS  PubMed  Google Scholar 

  49. Shimizu T, Izumi T, Seyama Y, Tadokoro K, Rådmark O, Samuelsson B (1986) Characterization of leukotriene A4 synthase from murine mast cells: evidence for its identity to arachidonate 5-lipoxygenase. Proc Natl Acad Sci USA 83:4175–4179. https://doi.org/10.1073/pnas.83.12.4175

    Article  CAS  PubMed  Google Scholar 

  50. Mittal M, Kumar RB, Balagunaseelan N, Hamberg M, Jegerschöld C, Rådmark O et al (2016) Kinetic investigation of human 5-lipoxygenase with arachidonic acid. Bioorg Med Chem Lett 26:3547–3551. https://doi.org/10.1016/j.bmcl.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  51. Riendeau D, Falgueyret JP, Meisner D, Sherman MM, Laliberté F, Street IP (1993) Interfacial catalysis and production of a high ratio of leukotriene A4 to 5-HPETE by 5-lipoxygenase in a coupled assay with phospholipase A2. J Lipid Mediat 6:23–30

    CAS  PubMed  Google Scholar 

  52. Rådmark O, Samuelsson B (2009) 5-Lipoxygenase: mechanisms of regulation. J Lipid Res 50:S40–S45. https://doi.org/10.1194/jlr.R800062-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peters-Golden M, Brock TG (2003) 5-lipoxygenase and FLAP. Prostaglandins Leukot Essent Fatty Acids 69:99–109. https://doi.org/10.1016/s0952-3278(03)00070-x

    Article  CAS  PubMed  Google Scholar 

  54. Hagmann W, Gao X, Timar J, Chen YQ, Strohmaier AR, Fahrenkopf C et al (1996) 12-Lipoxygenase in A431 cells: genetic identity, modulation of expression, and intracellular localization. Exp Cell Res 228:197–205. https://doi.org/10.1006/excr.1996.0317

    Article  CAS  PubMed  Google Scholar 

  55. Walther M, Wiesner R, Kuhn H (2004) Investigations into calcium-dependent membrane association of 15-lipoxygenase-1. Mechanistic roles of surface-exposed hydrophobic amino acids and calcium. J Biol Chem 279:3717–3725. https://doi.org/10.1074/jbc.M309564200

    Article  CAS  PubMed  Google Scholar 

  56. Bryant JA, Finn RS, Slamon DJ, Cloughesy TF, Charles AC (2004) EGF activates intracellular and intercellular calcium signaling by distinct pathways in tumor cells. Cancer Biol Ther 3:1243–1249. https://doi.org/10.4161/cbt.3.12.1233

    Article  CAS  PubMed  Google Scholar 

  57. Izumi T, Hoshiko S, Rådmark O, Samuelsson B (1990) Cloning of the cDNA for human 12-lipoxygenase. Proc Natl Acad Sci USA 87:7477–7481. https://doi.org/10.1073/pnas.87.19.7477

    Article  CAS  PubMed  Google Scholar 

  58. Natarajan R, Rosdahl J, Gonzales N, Bai W (1997) Regulation of 12-lipoxygenase by cytokines in vascular smooth muscle cells. Hypertension 30:873–879. https://doi.org/10.1161/01.hyp.30.4.873

    Article  CAS  PubMed  Google Scholar 

  59. Tersey SA, Bolanis E, Holman TR, Maloney DJ, Nadler JL, Mirmira RG (2015) Minireview: 12-lipoxygenase and islet β-cell dysfunction in diabetes. Mol Endocrinol 29:791–800. https://doi.org/10.1210/me.2015-1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nie D, Krishnamoorthy S, ** R, Tang K, Chen Y, Qia Y et al (2006) Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. J Biol Chem 281:18601–18609. https://doi.org/10.1074/jbc.M601887200

    Article  CAS  PubMed  Google Scholar 

  61. Romano M, Chen XS, Takahashi Y, Yamamoto S, Funk CD, Serhan CN (1993) Lipoxin synthase activity of human platelet 12-lipoxygenase. Biochem J 296:127–133. https://doi.org/10.1042/bj2960127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu S, Mueser TC, Marnett LJ, Funk MO Jr (2012) Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure 20:1490–1497. https://doi.org/10.1016/j.str.2012.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kanaoka Y, Ago H, Inagaki E, Nanayama T, Miyano M, Kikuno R et al (1997) Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell 90:1085–1095. https://doi.org/10.1016/s0092-8674(00)80374-8

    Article  CAS  PubMed  Google Scholar 

  64. Heidt M, Fürstenberger G, Voge S, Marks F, Krieg P (2000) Diversity of mouse lipoxygenases: identification of a subfamily of epidermal isozymes exhibiting a differentiation-dependent mRNA expression pattern. Lipids 35:701–707. https://doi.org/10.1007/s11745-000-0576-0

    Article  CAS  PubMed  Google Scholar 

  65. Sun D, McDonnell M, Chen XS, Lakkis M, Li H, Isaacs SN et al (1998) Human 12(R)-lipoxygenase and the mouse ortholog. Molecular cloning, expression, and gene chromosomal assignment. J Biol Chem 273:33540–33547. https://doi.org/10.1074/jbc.273.50.33540

    Article  CAS  PubMed  Google Scholar 

  66. Boeglin WE, Kim RB, Brash AR (1998) A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression. Proc Natl Acad Sci USA 95(12):6744–6749. https://doi.org/10.1073/pnas.95.12.6744

    Article  CAS  PubMed  Google Scholar 

  67. Muñoz-Garcia A, Thomas CP, Keeney DS, Zheng Y, Brash AR (2014) The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. Biochim Biophys Acta 1841:401–408. https://doi.org/10.1016/j.bbalip.2013.08.020

    Article  CAS  PubMed  Google Scholar 

  68. Eckl KM, de Juanes S, Kurtenbach J, Nätebus M, Lugassy J, Oji V et al (2009) Molecular analysis of 250 patients with autosomal recessive congenital ichthyosis: evidence for mutation hotspots in ALOXE3 and allelic heterogeneity in ALOX12B. J Invest Dermatol 129:1421–1428. https://doi.org/10.1038/jid.2008.409

    Article  CAS  PubMed  Google Scholar 

  69. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48(D1):D498–D503. https://doi.org/10.1093/nar/gkz1031

    Article  CAS  PubMed  Google Scholar 

  70. Zheng Y, Yin H, Boeglin WE, Elias PM, Crumrine D, Beier DR et al (2011) Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope. J Biol Chem 286:24046–24056. https://doi.org/10.1074/jbc.M111.251496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krieg P, Fürstenberger G (2014) The role of lipoxygenases in epidermis. Biochim Biophys Acta 1841:390–400. https://doi.org/10.1016/j.bbalip.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  72. Deb G, Boeshanes K, Idler WK, Ahvazi B (2011) Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of a 12R-LOX-chaperone complex. Acta Crystallogr Sect F 67:903–906. https://doi.org/10.1107/S1744309111021361

    Article  CAS  Google Scholar 

  73. Meruvu S, Walther M, Ivanov I, Hammarström S, Fürstenberger G, Krieg P et al (2005) Sequence determinants for the reaction specificity of murine (12R)-lipoxygenase: targeted substrate modification and site-directed mutagenesis. J Biol Chem 280:36633–36641. https://doi.org/10.1074/jbc.M508260200

    Article  CAS  PubMed  Google Scholar 

  74. Yu Z, Schneider C, Boeglin WE, Marnett LJ, Brash AR (2003) The lipoxygenase gene ALOXE3 implicated in skin differentiation encodes a hydroperoxide isomerase. Proc Natl Acad Sci USA 100:9162–9167. https://doi.org/10.1073/pnas.1633612100

    Article  CAS  PubMed  Google Scholar 

  75. Gregus AM, Dumlao DS, Wei SC, Norris PC, Catella LC, Meyerstein FG et al (2013) Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia. FASEB J 27:1939–1949. https://doi.org/10.1096/fj.12-217414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zheng Y, Brash AR (2010) On the role of molecular oxygen in lipoxygenase activation: comparison and contrast of epidermal lipoxygenase-3 with soybean lipoxygenase-1. J Biol Chem 285:39876–39887. https://doi.org/10.1074/jbc.M110.180794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pace-Asciak CR, Reynaud D, Demin PM (1995) Hepoxilins: a review on their enzymatic formation, metabolism and chemical synthesis. Lipids 30:107–114. https://doi.org/10.1007/BF02538262

    Article  CAS  PubMed  Google Scholar 

  78. Zheng Y, Brash AR (2010) Dioxygenase activity of epidermal lipoxygenase-3 unveiled: typical and atypical features of its catalytic activity with natural and synthetic polyunsaturated fatty acids. J Biol Chem 285:39866–39875. https://doi.org/10.1074/jbc.M110.155374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Funk CD, Keeney DS, Oliw EH, Boeglin WE, Brash AR (1996) Functional expression and cellular localization of a mouse epidermal lipoxygenase. J Biol Chem 271:23338–23344. https://doi.org/10.1074/jbc.271.38.23338

    Article  CAS  PubMed  Google Scholar 

  80. Siebert M, Krieg P, Lehmann WD, Marks F, Fürstenberger G (2001) Enzymic characterization of epidermis-derived 12-lipoxygenase isoenzymes. Biochem J 355(Pt 1):97–104. https://doi.org/10.1042/bj3550097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ursini F, Maiorino M, Forman HJ (2016) Redox homeostasis: The Golden Mean of healthy living. Redox Biol 8:205–215. https://doi.org/10.1016/j.redox.2016.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kinzig A, Fürstenberger G, Bürger F, Vogel S, Müller-Decker K, Mincheva A et al (1997) Murine epidermal lipoxygenase (Aloxe) encodes a 12-lipoxygenase isoform. FEBS Lett 402(2–3):162–166. https://doi.org/10.1016/s0014-5793(96)01517-7

    Article  CAS  PubMed  Google Scholar 

  83. Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575. https://doi.org/10.1126/science.6301011

    Article  CAS  PubMed  Google Scholar 

  84. Rudberg PC, Tholander F, Thunnissen MM, Samuelsson B, Haeggstrom JZ (2002) Leukotriene A4 hydrolase: selective abrogation of leukotriene B4 formation by mutation of aspartic acid 375. Proc Natl Acad Sci USA 99:4215–4220. https://doi.org/10.1073/pnas.072090099

    Article  CAS  PubMed  Google Scholar 

  85. Rådmark O, Shimizu T, Jörnvall H, Samuelsson B (1984) Leukotriene A4 hydrolase in human leukocytes. Purification and properties. J Biol Chem 259:12339–12345

    PubMed  Google Scholar 

  86. Tholander F, Muroya A, Roques BP, Fournié-Zaluski MC, Thunnissen MM, Haeggström JZ (2008) Structure-based dissection of the active site chemistry of leukotriene A4 hydrolase: implications for M1 aminopeptidases and inhibitor design. Chem Biol 15:920–929. https://doi.org/10.1016/j.chembiol.2008.07.018

    Article  CAS  PubMed  Google Scholar 

  87. Andberg MB, Hamberg M, Haeggström JZ (1997) Mutation of tyrosine 383 in leukotriene A4 hydrolase allows conversion of leukotriene A4 into 5S,6S-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid. Implications for the epoxide hydrolase mechanism. J Biol Chem 272:23057–23063. https://doi.org/10.1074/jbc.272.37.23057

    Article  CAS  PubMed  Google Scholar 

  88. Thunnissen MM, Nordlund P, Haeggström JZ (2001) Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat Struct Biol 8:131–135. https://doi.org/10.1038/84117

    Article  CAS  PubMed  Google Scholar 

  89. Orning L, Gierse JK, Fitzpatrick FA (1994) The bifunctional enzyme leukotriene-A4 hydrolase is an arginine aminopeptidase of high efficiency and specificity. J Biol Chem 269:11269–11273

    CAS  PubMed  Google Scholar 

  90. Jiang X, Zhou L, Wei D, Meng H, Liu Y, Lai L (2008) Activation and inhibition of leukotriene A4 hydrolase aminopeptidase activity by diphenyl ether and derivatives. Bioorg Med Chem Lett 18:6549–6552. https://doi.org/10.1016/j.bmcl.2008.10.044

    Article  CAS  PubMed  Google Scholar 

  91. Lam B, Austen KF (2000) Leukotriene C4 synthase. A pivotal enzyme in the biosynthesis of the cysteinyl leukotrienes. Am J Respir Crit Care Med 161:S16–S19. https://doi.org/10.1164/ajrccm.161.supplement_1.ltta-4

    Article  CAS  PubMed  Google Scholar 

  92. Welsch DJ, Creely DP, Hauser SD, Mathis KJ, Krivi GG, Isakson PC (1994) Molecular cloning and expression of human leukotriene-C4 synthase. Proc Natl Acad Sci USA 91:9745–9749. https://doi.org/10.1073/pnas.91.21.9745

    Article  CAS  PubMed  Google Scholar 

  93. Rinaldo-Matthis A, Wetterholm A, Martinez Molina D, Holm J, Niegowski D, Ohlson E et al (2010) Arginine 104 is a key catalytic residue in leukotriene C4 synthase. J Biol Chem 285:40771–40776. https://doi.org/10.1074/jbc.M110.105940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Martinez Molina D, Wetterholm A, Kohl A, McCarthy A, Niegowsk D, Ohlson E et al (2007) Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase. Nature 448:613–616. https://doi.org/10.1038/nature06009

    Article  CAS  PubMed  Google Scholar 

  95. Rinaldo-Matthis A, Ahmad S, Wetterholm A, Lachmann P, Morgenstern R, Haeggström JZ (2012) Pre-steady-state kinetic characterization of thiolate anion formation in human leukotriene C4 synthase. Biochemistry 51:848–856. https://doi.org/10.1021/bi201402s

    Article  CAS  PubMed  Google Scholar 

  96. Saino H, Ukita Y, Ago H, Irikura D, Nisawa A, Ueno G et al (2011) The catalytic architecture of leukotriene C4 synthase with two arginine residues. J Biol Chem 286:16392–16401. https://doi.org/10.1074/jbc.M110.150177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tate SS (1981) gamma-Glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem 39:357–368. https://doi.org/10.1007/bf00232585

    Article  CAS  PubMed  Google Scholar 

  98. West MB, Chen Y, Wickham S, Heroux A, Cahill K, Hanigan MH et al (2013) Novel insights into eukaryotic gamma-glutamyl transpeptidase 1 from the crystal structure of the glutamate-bound human enzyme. J Biol Chem 288:31902–31913. https://doi.org/10.1074/jbc.M113.498139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Oinonen C, Rouvinen J (2000) Structural comparison of Ntn-hydrolases. Protein Sci 9:2329–2337. https://doi.org/10.1110/ps.9.12.2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Castonguay R, Halim D, Morin M, Furtos A, Lherbet C et al (2007) Kinetic characterization and identification of the acylation and glycosylation sites of recombinant human gamma-glutamyltranspeptidase. Biochemistry 46:12253–12262. https://doi.org/10.1021/bi700956c

    Article  CAS  PubMed  Google Scholar 

  101. West MB, Segu ZM, Feasley CL, Kang P, Klouckov I, Li C et al (2010) Analysis of site-specific glycosylation of renal and hepatic gamma-glutamyl transpeptidase from normal human tissue. J Biol Chem 285:29511–29524. https://doi.org/10.1074/jbc.M110.145938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Suzuki H, Kumaga H (2002) Autocatalytic processing of gamma-glutamyltranspeptidase. J Biol Chem 277:43536–43543. https://doi.org/10.1074/jbc.M207680200

    Article  CAS  PubMed  Google Scholar 

  103. West MB, Wickham S, Quinalty LM, Pavlovicz RE, Li C, Hanigan MH (2011) Autocatalytic cleavage of human gamma-glutamyl transpeptidase is highly dependent on N-glycosylation at asparagine 95. J Biol Chem 286:28876–28888. https://doi.org/10.1074/jbc.M111.248823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ikeda Y, Fujii J, Anderson ME, Taniguchi N, Meister A (1995) Involvement of Ser-451 and Ser-452 in the catalysis of human gamma-glutamyl transpeptidase. J Biol Chem 270:22223–22228. https://doi.org/10.1074/jbc.270.38.22223

    Article  CAS  PubMed  Google Scholar 

  105. Nitanai Y, Satow Y, Adachi H, Tsujimoto M (2002) Crystal structure of human renal dipeptidase involved in beta-lactam hydrolysis. J Mol Biol 321:177–184. https://doi.org/10.1016/s0022-2836(02)00632-0

    Article  CAS  PubMed  Google Scholar 

  106. Kera Y, Liu Z, Matsumoto T, Sorimachi Y, Nagasaki H, Yamada RH (2002) Rat and human membrane dipeptidase: tissue distribution and developmental changes. Comput Biochem Physiol B 23:53–58. https://doi.org/10.1016/s0305-0491(99)00039-5

    Article  Google Scholar 

  107. Hooper NM, Keen JN, Turner AJ (1990) Characterization of the glycosyl-phosphatidylinositol-anchored human renal dipeptidase reveals that it is more extensively glycosylated than the pig enzyme. Biochem J 265:429–433. https://doi.org/10.1042/bj2650429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Adachi H, Katayama T, Inuzuka C, Oikawa S, Tsujimoto M, Nakazato H (1990) Identification of membrane anchoring site of human renal dipeptidase and construction and expression of a cDNA for its secretory form. J Biol Chem 265:15341–15345

    CAS  PubMed  Google Scholar 

  109. Adachi H, Kubota I, Okamura N, Iwata H, Tsujimoto M, Nakazato H et al (1989) Purification and characterization of human microsomal dipeptidase. J Biochem 105:957–961. https://doi.org/10.1093/oxfordjournals.jbchem.a122787

    Article  CAS  PubMed  Google Scholar 

  110. Adachi H, Tawaragi Y, Inuzuka C, Kubota I, Tsujimoto M, Nishihara T et al (1990) Primary structure of human microsomal dipeptidase deduced from molecular cloning. J Biol Chem 265:3992–3995

    CAS  PubMed  Google Scholar 

  111. Feltenmark S, Gautam N, Brunnström A, Griffiths W, Backman L, Edenius C et al (2008) (2008) Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells. Proc Natl Acad Sci USA 105:680–685. https://doi.org/10.1073/pnas.0710127105

    Article  PubMed  Google Scholar 

  112. Serhan CN, Petasis NA (2011) Resolvins and protectins in inflammation resolution. Chem Rev 111:5922–5943. https://doi.org/10.1021/cr100396c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hong S, Porter TF, Lu Y, Oh SF, Pillai PS, Serhan CN (2008) Resolvin E1 metabolome in local inactivation during inflammation-resolution. J Immunol 180:3512–3519. https://doi.org/10.4049/jimmunol.180.5.3512

    Article  CAS  PubMed  Google Scholar 

  114. Zhu M, Wang X, Hjorth E, Colas RA, Schroeder L, Granholm AC, Serhan CN, Schultzberg M (2016) Pro-resolving lipid mediators improve neuronal survival and increase Aβ42 phagocytosis. Mol Neurobiol 53:2733–2749. https://doi.org/10.1007/s12035-015-9544-0

    Article  CAS  PubMed  Google Scholar 

  115. Wang CW, Colas RA, Dalli J, Arnardottir HH, Nguyen D, Hasturk H et al (2015) Maresin 1 biosynthesis and proresolving anti-infective functions with human-localized aggressive periodontitis leukocytes. Infect Immun 84:658–665. https://doi.org/10.1128/IAI.01131-15

    Article  CAS  PubMed  Google Scholar 

  116. Cao H, Yu R, Tao Y, Nikolic D, van Breemen RB (2011) Measurement of cyclooxygenase inhibition using liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 54:230–235. https://doi.org/10.1016/j.jpba.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  117. Cuendet M, Mesecar A, DeWitt DL, Pezzuto JM (2006) An ELISA method to measure inhibition of the COX enzymes. Nat Protoc 1:1915–1921. https://doi.org/10.1038/nprot.2006.308

    Article  CAS  PubMed  Google Scholar 

  118. Chandrasekharan NV, Simmons DL (2004) The cyclooxygenases. Genome Biol 5:241–247. https://doi.org/10.1186/gb-2004-5-9-241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nemeth JF, Hochgesang GP Jr, Marnett LJ, Caprioli RM (2001) Characterization of the glycosylation sites in cyclooxygenase-2 using mass spectrometry. Biochemistry 40:3109–3116. https://doi.org/10.1021/bi002313c

    Article  CAS  PubMed  Google Scholar 

  120. Lecomte M, Laneuville O, Ji C, DeWitt DL, Smith WL (1994) Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J Biol Chem 269:13207–13215

    CAS  PubMed  Google Scholar 

  121. Patrono C (1994) Aspirin as an antiplatelet drug. N Engl J Med 330:1287–1294. https://doi.org/10.1056/NEJM199405053301808

    Article  CAS  PubMed  Google Scholar 

  122. Lucido MJ, Orlando BJ, Vecchio AJ, Malkowski MG (2016) Crystal structure of aspirin-acetylated human cyclooxygenase-2: insight into the formation of products with reversed stereochemistry. Biochemistry 55:1226–1238. https://doi.org/10.1021/acs.biochem.5b01378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sharma NP, Dong L, Yuan C, Noon KR, Smith WL (2010) Asymmetric acetylation of the cyclooxygenase-2 homodimer by aspirin and its effects on the oxygenation of arachidonic, eicosapentaenoic, and docosahexaenoic acids. Mol Pharmacol 77:979–986. https://doi.org/10.1124/mol.109.063115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Giménez-Bastida JA, Boeglin WE, Boutaud O, Malkowski MG, Schneider C (2019) Residual cyclooxygenase activity of aspirin-acetylated COX-2 forms 15 R-prostaglandins that inhibit platelet aggregation. FASEB J 33:1033–1041. https://doi.org/10.1096/fj.201801018R

    Article  PubMed  Google Scholar 

  125. Lam BK, Penrose JF, Xu K, Baldasaro MH, Austen KF (1997) Site-directed mutagenesis of human leukotriene C4 synthase. J Biol Chem 272:13923–13928. https://doi.org/10.1074/jbc.272.21.13923

    Article  CAS  PubMed  Google Scholar 

  126. Ikeda Y, Fujii J, Taniguchi N (1996) Effects of substitutions of the conserved histidine residues in human gamma-glutamyl transpeptidase. J Biochem 119:1166–1170. https://doi.org/10.1093/oxfordjournals.jbchem.a021363

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Gregory Biringer.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Research involving human participants and/or animals

The author declares that no Human or Animal subjects were used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biringer, R.G. The enzymology of human eicosanoid pathways: the lipoxygenase branches. Mol Biol Rep 47, 7189–7207 (2020). https://doi.org/10.1007/s11033-020-05698-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05698-8

Keywords

Navigation