Log in

Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cultivated grapevines, Vitis vinifera subsp. sativa, are thought to have been domesticated from wild populations of Vitis vinifera subsp. sylvestris in Central Asia. V. vinifera subsp. sativa is one of the most economically important fruit crops worldwide. Since cultivated grapevines are susceptible to multiple biotic and abiotic soil factors, they also need to be grafted on resistant rootstocks that are mostly developed though hybridization between American wild grapevine species (V. berlandieri, V. riparia, and V. rupestris). Therefore, wild grapevine species are essential genetic materials for viticulture to face biotic and abiotic stresses in both cultivar and rootstock parts. Actually, viticulture faces several environmental constraints that are further intensified by climate change. Recently, several reports on biotic and abiotic stresses-response in wild grapevines revealed accessions tolerant to different constraints. The emergence of advanced techniques such as omics technologies, marker-assisted selection (MAS), and functional analysis tools allowed a more detailed characterization of resistance mechanisms in these wild grapevines and suggest a number of species (V. rotundifolia, V. rupestris, V. riparia, V. berlandieri and V. amurensis) have untapped potential for new resistance traits including disease resistance loci and key tolerance genes. The present review reports on the importance of different biotechnological tools in exploring and examining wild grapevines tolerance mechanisms that can be employed to promote elite cultivated grapevines under climate change conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapevines. Trends Genet 22:511–519

    CAS  PubMed  Google Scholar 

  2. Agurto M, Schlechter RO, Armijo G, Solano E, Serrano C, Contreras RA, Zúñiga GE, Arce-Johnson P (2017) RUN1 and REN1 Pyramiding in Grapevine (Vitis vinifera cv. Crimson Seedless) displays an improved defense response leading to enhanced resistance to powdery Mildew (Erysiphe necator). Front Plant Sci 8:758

    PubMed  PubMed Central  Google Scholar 

  3. Carvalho LC, Amâncio S (2019) Cutting the gordian knot of abiotic stress in grapevine: from the test tube to climate change adaptation. Physiol Plant 165:330–342

    CAS  PubMed  Google Scholar 

  4. Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2014) Climate factors driving wine production in the Portuguese Minho region. Agric For Meteorol 185:26–36

    Google Scholar 

  5. Ashour EK, Al-Najar H (2012) The impact of climate change and soil salinity in irrigation water demand in the Gaza Strip. J Earth Sci Clim Chang 3(2):120

    Google Scholar 

  6. Reisch BI, Owens CL, Cousins PS (2012) Grape. In: Badenes ML, Byrne DH (eds) Fruit breeding. Springer, New York, pp 225–262

    Google Scholar 

  7. Arnold C, Gillet F, Gobat JM (1998) Situation de la vigne sauvage Vitis vinifera subsp. Silvestris en Europe. Vitis 37:159–170

    Google Scholar 

  8. Askri H, Daldoul S, Ben Amar A, Rejeb S, Rejeb MN, Mliki A, Ghorbel A (2012) Molecular and physiological characterization of salt stress in wild grapevines (Vitis vinifera ssp. Sylvestris). Acta Physiol Plant 34:957–968

    CAS  Google Scholar 

  9. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    CAS  PubMed  Google Scholar 

  10. Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38

    PubMed  PubMed Central  Google Scholar 

  11. Daldoul S, Guillaumie S, Reustle GM, Krczal G, Ghorbel A, Delrot S, Mliki A, Höfer MU (2010) Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. Plant Sci 179:489–498

    CAS  PubMed  Google Scholar 

  12. Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    CAS  PubMed  Google Scholar 

  13. Cramer GR, Van Sluyter SC, Hopper DW, Pascovici D, Keighley T, Haynes PA (2013) Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biol 13:49

    CAS  PubMed  PubMed Central  Google Scholar 

  14. George IS, Haynes PA (2014) Current perspectives in proteomic analysis of abiotic stress in Grapevines. Front Plant Sci 5:686. https://doi.org/10.3389/fpls.2014.00686

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grimplet J, Wheatley MD, Jouira HB, Deluc LG, Cramer GR, Cushman JC (2009) Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 9:2503–2528

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Conde A, Regalado A, Rodrigues D, Costa JM, Blumwald E, Chaves MM, Gerós H (2015) Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. J Exp Bot 66(3):889–906

    CAS  PubMed  Google Scholar 

  17. Serra I, Strever A, Myburgh PA, Deloire A (2013) Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust J Grape Wine Res 20:1–14. https://doi.org/10.1111/ajgw.12054

    Article  Google Scholar 

  18. Pavlousek P (2007) Evaluation of resistance to powdery mildew in grapevine genetic resources. J Cent Eur Agric 8:C105–C114

    Google Scholar 

  19. Boubakri H (2017) The role of ascorbic acid in plant–pathogen interactions. In: Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham

    Google Scholar 

  20. Chen W-J, Delmotte F, Cervera SR, Douence L, Greif C, Corio-Costet M-F (2007) At least lwo Origins of fungicide resistance in grapevine downy mildew populations. Appl Environ Microbiol 73(16):5162–5172

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Staudt G (1997) Evaluation of grapevine powdery mildew (Uncinula necator, anamorph Oidium tuckeri) in accessions of Vitis species. Bachelhurst. Merzhausen Germany. Vitis 36(3):151–154

    Google Scholar 

  22. Wan Y, Schwaniniger H, He P, Wang Y (2007) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis 46:132–136

    Google Scholar 

  23. Hoffmann S, Di Gaspero G, Kovacs L, Howard S, Kiss E, Galbacs Z, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427–438

    CAS  PubMed  Google Scholar 

  24. Coleman C, Copetti D, Cipriani G, Hoffmann S, Kozma P, Kovacs L, Morgante M, Testolin R, Di Gaspero G (2009) The powdery mildew resistance gene REN1 cosegregates with an NBS-LRR gene cluster in two central Asian grape varieties. BMC Genet 10:89

    PubMed  PubMed Central  Google Scholar 

  25. Ramming DW, Gabler F, Smilanick J, Cadle-Davidson M, Barba P, Mahanil S, Cadle-Davidson L (2010) A single dominant locus, Ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology 101:502–508

    Google Scholar 

  26. Riaz S, Boursiquot J-M, Dangl G, Lacombe T, Laucou V, Tenscher A, Walker AM (2013) Identification of mildew resistance in wild and cultivated central Asian grape germplasm. BMC Plant Biol 13:149

    PubMed  PubMed Central  Google Scholar 

  27. Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited map** strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073

    CAS  PubMed  Google Scholar 

  28. Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Oláh R, Walker MA (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16:170

    PubMed  PubMed Central  Google Scholar 

  29. Yang S, Zhang X, Yue J-X, Tian D, Chen J-Q (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics 280:187–198

    CAS  PubMed  Google Scholar 

  30. Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann- Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB (2013) Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76:661–674

    CAS  PubMed  Google Scholar 

  31. Sean M, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Andy R, Chia J, Wareh D, Bustamante CD, Bucklera ES (2011) Genetic structure and domestication history of the grape. PNAS 3530–3535:108

    Google Scholar 

  32. Zhu Z, Shi J, Xu W, Li H, He M, Xu Y, Xu T, Yang Y, Cao J, Wang Y (2013) Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. J Plant Physiol 170(10):923–933

    CAS  PubMed  Google Scholar 

  33. Xu TF, Zhao XC, Jiao YT, Wei JY, Wang L, Xu Y (2014) A pathogenesis related protein, VpPR-10.1, from Vitis pseudoreticulata: an insight of its mode of antifungal activity. PLoS ONE 9:e95102

    PubMed  PubMed Central  Google Scholar 

  34. Jiao C, Gao M, Wang X, Fei Z (2015) Transcriptome characterization of three wild chinese Vitis uncovers a large number of distinct disease related genes. BMC Genomics 16:223

    PubMed  PubMed Central  Google Scholar 

  35. Weng K, Li Z-Q, Liu R-Q, Wang L, Wang Y-J, Xu Y (2014) Transcriptome of Erysiphe necator-infected Vitis pseudoreticulata leaves provides insight into grapevine resistance to powdery mildew. Hortic Res 1:14049

    PubMed  PubMed Central  Google Scholar 

  36. Jiu S, Zhu X, Wang J, Zhang C, Mu Q, Wang C, Fang J (2015) Genome-Wide map** and analysis of grapevine microRNAs and their potential target genes. BMC Genomics 16:223

    Google Scholar 

  37. Wang C, Han J, Liu C, Kibet KN, Kayesh E, Shangguan L, Li X, Fang J (2012) Identification of microR-NAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 13:122

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Guan X, Zhao H, Xu Y, Wang Y (2011) Transient expression of glyoxal oxidase from the Chinese wild grape Vitis pseudoreticulata can suppress powdery mildew in a susceptible genotype. Protoplasma 248:415–423

    CAS  PubMed  Google Scholar 

  39. Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen-and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231:475–487

    CAS  PubMed  Google Scholar 

  40. Victor KJ, Fennell AY, Grimplet J (2010) Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. Grapevines. Proteome Sci 8:44

    PubMed  PubMed Central  Google Scholar 

  41. George IS, Haynes PA (2014) Current perspectives inproteomic analysis of abiotic stress in Grapevines. Front Plant Sci 5:686

    PubMed  PubMed Central  Google Scholar 

  42. Daldoul S, Ben Amar A, Guillaumie S, Mliki A (2014) Integration of omics and system biology approaches to study grapevine (Vitis vinifera L.) response to salt stress: a perspective for functional genomics—a review. J Int Sci Vigne Vin 48:189–200

    CAS  Google Scholar 

  43. Heywood V, Zohary D (1991) A catalogue of the wild relatives of cultivated plants native to Europe. Flora Mediter 5:375–415

    Google Scholar 

  44. Kok D (2007) Responses of V. vinifera subsp. sylvestris (C.C.Gmlin) ecotypes originated from two different geographical region of Turkey to salinity stress at seed germination and plantlet stages. Pak J Biol Sci 10(16):2631–2638

    Google Scholar 

  45. Venturini L, Ferrarini A, Zenoni S, Tornielli GB, Fasoli M, Dal Santo S, Minio A, Buson G, Tononi P, Zago ED, Zamperin G, Bellin D, Pezzotti M, Delledonne M (2013) De novo transcriptome characterization of Vitis viniferacv. Corvina unveils varietal diversity. BMC Genomics 14:41

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Siddiqua M, Nassuth A (2011) Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Environ 34:1345–1359

    CAS  PubMed  Google Scholar 

  47. Da Silva C, Zamperin G, Ferrarini A, Minio A, Dal Molin A, Venturini L, Buson G, Tononi P, Avanzato C, Zago E, Boido E, Dellacassa E, Gaggero C, Pezzotti M, Carrau F, Delledonne M (2013) The high polyphenol content of grapevine cultivar tannat berries is conferred primarily by genes that are not shared with the reference genome. Plant Cell 25:4777–4788

    PubMed  PubMed Central  Google Scholar 

  48. **n H, Zhu W, Wang L, **ang Y, Fang L, Li J, Sun X, Wang N, Londo JP, Li S (2013) Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PLoS ONE 8(3):e58740

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fu CH, Chen YW, Hsiao YY, Pan ZJ, Liu ZJ, Huang YM, Tsai WC, Chen HH (2011) Orchid Base: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52:238–243

    CAS  PubMed  Google Scholar 

  50. Su CL, Chao YT, Alex Chang YC, Chen WC, Chen CY, Lee AY, Hwa KT, Shih MC (2011) De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 52:1501–1514

    CAS  PubMed  Google Scholar 

  51. Doddapaneni H, Lin H, Walker MA, Yao J, Civerolo EL (2008) Vitis ExpDB: a database resource for grape functional genomics. BMC Plant Biol 8:23. https://doi.org/10.1186/1471-2229-8-23

    Article  PubMed  PubMed Central  Google Scholar 

  52. Grimplet J, Cramer GR, Dickerson JA, Mathiason K, Van Hemert J, Fennell AY (2009) VitisNet :“Omics” integration through grapevine molecular networks. PLoS ONE 4:e8365

    PubMed  PubMed Central  Google Scholar 

  53. Grimplet J, Van Hemert J, Carbonell-Bejerano P, Díaz- Riquelme J, Dickerson J, Fennell A, Pezzotti M, Martínez-Zapater JM (2012) Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 5:213

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Naithani S, Raja R, Waddell EN, Elser J, Gouthu S, Deluc LG, Jaiswal P (2014) VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera). Front Plant Sci 5:644

    PubMed  PubMed Central  Google Scholar 

  55. Pulvirenti A, Giugno R, Distefano R, Pigola G, Mongiovi M, Giudice G, Vendramin V, Lombardo A, Cattonaro F, Ferro A (2015) knowledge base for Vitis vinifera functional analysis. BMC Syst Biol 9(Suppl 3):S5

    PubMed  PubMed Central  Google Scholar 

  56. Wong DC, Sweetman C, Drew DP, Ford CM (2013) VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genomics 14:882. https://doi.org/10.1186/1471-2164-14-882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moretto M, Sonego P, Pilati S, Malacarne G, Costantini L, Grzeskowiak L, Bagagli G, Grando Maria S, Moser C, Engelen K (2016) VESPUCCI: exploring patterns of gene expression in grapevine. Front Plant Sci 7:633

    PubMed  PubMed Central  Google Scholar 

  58. Wong DCJ, Matus JT (2017) Constructing integrated networks for identifying new secondary metabolic pathway regulators in grapevine: Recent applications and future opportunities. Front Plant Sci 8:505

    PubMed  PubMed Central  Google Scholar 

  59. Dubrovina AS, Kiseleva KV, Khristenkoa VS (2013) Expression of calcium-dependent protein kinase (CDPK) genes under abiotic stress conditions in wild-growing grapevine Vitis amurensis. J Plant Physiol 170:1491–1500

    CAS  PubMed  Google Scholar 

  60. Dubrovina AS, Kiseleva KV, Khristenko VS, Aleynova OA (2015) VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. J Plant Physiol 185:1–12

    CAS  PubMed  Google Scholar 

  61. Kiselev KV, Dubrovina AS, Shumakova OA, Karetin YA, Manyakhin AY (2013) Structure and expression profiling of a novel calcium-dependent protein kinase gene, CDPK3a, in leaves, stems, grapes, and cell cultures of wild-growing grapevine Vitis amurensis Rupr. Plant Cell Rep 32:431–442

    CAS  PubMed  Google Scholar 

  62. He R, Zhuang Y, Cai Y, Agüero CB, Liu S, Wu J, Deng S, Walker MA, Lu J, Zhang Y (2018) Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine increases drought tolerance and results in pleiotropic effects. Front Plant Sci 9:970

    PubMed  PubMed Central  Google Scholar 

  63. Kovaleski AP, Londo JP (2019) Tempo of gene regulation in wild and cultivated Vitis species shows coordination between cold deacclimation and budbreak. Plant Sci 287:110781

    Google Scholar 

  64. Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    PubMed  PubMed Central  Google Scholar 

  65. Chai F, Liu W, **ang Y, Meng X, Sun X, Cheng C, Liu G, Duan L, **n H, Li S (2019) Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation. Hortic Res 6:8

    CAS  PubMed  PubMed Central  Google Scholar 

  66. **ao H, Nassuth A (2007) Stress and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep 25:968–977

    Google Scholar 

  67. Choi Y-J, Hur YY, Jung S-M, Se-H K, Jung-Ho N, Park S-J, Park K-S, Yun H-K (2013) Transcriptional analysis of dehydrin1 genes responsive to dehydrating stress in grapevines. Hortic Environ Biotechnol 54(3):272–279

    CAS  Google Scholar 

  68. Yazhou Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140

    Google Scholar 

  69. Xu W, Jiao Y, Li R, Zhang N, **ao D, Ding X, Wang Z (2014) Chinese wild-growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH Transcription Activators that regulate cold tolerance in Arabidopsis. PLoS ONE 9(7):e102303

    PubMed  PubMed Central  Google Scholar 

  70. Xu WR, Zhang NB, Jiao YT, Li RM, **ao DM, Wang ZP (2014) The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Mol Biol Rep 41:5329–5342

    CAS  PubMed  Google Scholar 

  71. **ao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421

    CAS  PubMed  Google Scholar 

  72. **ao H, Tattersall EAR, Siddiqua MK, Cramer G, Nassuth A (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ 31:1–10

    CAS  PubMed  Google Scholar 

  73. Dong C, Zhang Z, Qin Y, Ren J, Huang J, Wang B, Lu H, Cai B, Tao J (2013) VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance. Acta Physiol Plant 35:2975–2984

    CAS  Google Scholar 

  74. Dong C, Qin Y, Wang B, Lu H, **ao L, Yang R, Wang Y, Chen L, Feng Y (2014) COR-like gene is involved in induced-expression response to multiple abiotic stresses in grapevine (Vitis amurensis) tissues. Agric Sci 5:604–610

    CAS  Google Scholar 

  75. Li F, Fan X-C, Liu C-H, Zhang Y, Jian G-F, Li M (2012) Investigation resistance to white rot in grape germplasm resources. China Fruit 72–74.

  76. Peng S, Zhu Z, Zhao K, Shi J, Yang Y, He M, Wang Y (2013) A novel heat shock transcription factor, VpHsf1, from Chinese wild Vitis pseudoreticulata is involved in biotic and abiotic stresses. Plant Mol Biol Rep 31(1):240–247

    CAS  Google Scholar 

  77. Yu Y, Xu W, Wang S, Xu Y, Li H, Wang Y, Li S (2011) VpRFP1, a novel C4C4-type RING finger protein gene from Chinese wild Vitis pseudoreticulata, functions as a transcriptional activator in defence response of grapevine. J Exp Bot 62(15):5671–5682

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yuan Y, Fang L, Karungo SK, Zhang L, Gao Y, Li S, **n H (2016) Over-expression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep 35:655–666

    CAS  PubMed  Google Scholar 

  79. Xu Y, Yu H, He M, Yang Y, Wang Y (2010) Isolation and expression analysis of a novel pathogenesis-related protein 10 gene from Chinese wild Vitis pseudoreticulata induced by Uncinula necator. Biologia 65:653–659

    CAS  Google Scholar 

  80. He MY, Xu Y, Cao JJ, Zhu ZG, Jiao YT, Wang YJ, Guan X, Yang YZ, Xu WR, Fu ZF (2013) Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma 250:129–140

    CAS  PubMed  Google Scholar 

  81. Wang L, Wei J, Zou Y, Xu K, Wang Y, Cui L, Xu Y (2014) Molecular characteristics and biochemical functions of VpPR10s from Vitis pseudoreticulata associated with biotic and abiotic stresses. Int J Mol Sci 15:19162–19182

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu W, Yu Y, Zhou Q, Ding J, Dai L, **e X, Xu Y, Zhang C, Wang Y (2011) Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. J Exp Bot 62:2745–2761

    CAS  PubMed  Google Scholar 

  83. Zheng X, Shi J, Yu Y, Shen Y, Tan B, Ye X, Li J, Feng J (2017) Exploration of elite stilbene synthase alleles for resveratrol concentration in wild Chinese Vitis spp. and Vitis cultivars. Front Plant Sci. 8:487

    PubMed  PubMed Central  Google Scholar 

  84. Lin L, Wang X, Wang Y (2006) cDNA clone, fusion expression and purification of the novel gene related to ascorbate peroxidase from Chinese wild Vitis pseudoreticulata in E. coli. Mol Biol Rep 33:197–206

    CAS  PubMed  Google Scholar 

  85. Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: Inferences from the rice genome. J Mol Evol 59:761–770

    CAS  PubMed  Google Scholar 

  86. Wu J, Zhang Y, Zhang H, Huang H, Folta KM, Lu J (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:234

    PubMed  PubMed Central  Google Scholar 

  87. Jelly NS, Valat L, Walter B, Maillot P (2014) Transient expression assays in grapevine: a step towards genetic improvement. Plant Biotechnol J 12:1231–1245

    PubMed  Google Scholar 

  88. Zhao T, Wang Z, Su L, Sun X, Cheng J, Zhang L, Karungo KS, Han Y, Li S, **n H (2017) An efficient method for transgenic callus induction from Vitis amurensis petiole. PLoS ONE 12(6):e0179730

    PubMed  PubMed Central  Google Scholar 

  89. Dhekney SA, Li ZT, Grant TN, Gray DJ (2016) Somatic embryogenesis and genetic modification of Vitis. Methods Mol Biol 1359:263–277

    CAS  PubMed  Google Scholar 

  90. Fan CH, Pu N, Wang XP, Wang YJ, Fang L, Xu WR et al (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Org 92:197–206

    CAS  Google Scholar 

  91. Wang Y, Wang D, Wang F, Huang L, Tian X, van Nocker S, Gao H, Wang X (2017) Expression of the Grape VaSTS19 gene in Arabidopsis improves resistance to powdery mildew and botrytis cinerea but increases susceptibility to Pseudomonas syringe pv Tomato DC3000. Int J Mol Sci 18:2000

    PubMed Central  Google Scholar 

  92. Dai L, Wang D, **e X, Zhang C, Wang X, Xu Y, Wang Y, Zhang J (2016) The Novel Gene VpPR4-1 from Vitis pseudoreticulata increases powdery mildew resistance in transgenic Vitis vinifera L. Front Plant Sci 27(7):695

    Google Scholar 

  93. Zhao H, Guan X, Xu Y, Wang Y (2013) Characterization of novel gene expression related to glyoxal oxidase by agro-infiltration of the leaves of accession Baihe-35-1 of Vitis pseudoreticulata involved in production of H2O2 for resistance to Erysiphe necator. Protoplasma 250:765–777

    CAS  PubMed  Google Scholar 

  94. Duan D, Fischer S, Merz P, Bogs J, Riemann M, Nick P (2016) An ancestral allele of grapevine transcription factor MYB14 promotes plant defence. J Exp Bot 67:1795–1804

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jiao Y, Wang D, Wang L, Jiang C, Wang Y (2017) VqMAPKKK38 is essential for stilbene accumulation in grapevine. Hortic Res 4:17058

    PubMed  PubMed Central  Google Scholar 

  96. Wen Y, Wang X, **ao S, Wang Y (2012) Ectopic expression of VpALDH2B4, a novel aldehyde dehydrogenase gene from Chinese wild grapevine (Vitis pseudoreticulata), enhances resistance to mildew pathogens and salt stress in Arabidopsis. Planta 236:525–539

    CAS  PubMed  Google Scholar 

  97. Zhou Q, Dai L, Cheng S, He J, Wang D, Zhang J, Wang Y (2014) A circulatory system useful both for long-term somatic embryogenesis and genetic transformation in Vitis vinifera L. cv. Thompson seedless. Plant Cell Tissue Org 118:157–168

    CAS  Google Scholar 

  98. Yu Y, Xu W, Wang J, Wang L, Yao W, Xu Y, Ding J, Wang Y (2013) A core functional region of the RFP1 promoter from Chinese wild grapevine is activated by powdery mildew pathogen and heat stress. Planta 237:293–303

    CAS  PubMed  Google Scholar 

  99. Yu Y, Xu W, Wang J, Wang L, Yao W, Yang Y, Xu Y, Ma F, Du Y, Wang Y (2013) The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. New Phytol 200:834–846

    CAS  PubMed  Google Scholar 

  100. Wang L, **e X, We Y, Wang J, Ma F, Wang C, Yang Y, Tong W, Zhang J, Wang YXX, Zhang C, Wang Y (2017) RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A. J Exp Bot 68(7):1669–1687

    CAS  PubMed  Google Scholar 

  101. Fang LC, Su LY, Sun XM, Li XB, Sun MX, Karungo SK et al (2016) Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot 67:2829–2845

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu W, Li R, Zhang N, Ma F, Jiao Y, Wang Z (2014) Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol 86:527–541

    CAS  PubMed  Google Scholar 

  103. Hongmin H, Hui J, Qin Y, **%2CW"> Google Scholar 

  104. Zhu Z, Shi J, He M, Cao J, Wang Y (2012) Isolation and functional characterization of a transcription factor VpNAC1 from Chinese wild Vitis pseudoreticulata. Biotech Lett 34:1335–1342

    CAS  Google Scholar 

  105. Li H, Xu Y, **ao Y, Zhu Z, **e X, Zhao H, Wang Y (2010) Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta 232(6):1325–1337

    CAS  PubMed  Google Scholar 

  106. Zhu Z, Shi J, Cao J, He M, Wang Y (2012) VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata. Plant Cell Rep 31(11):2109–2120

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to Dr. Jason P Londo (United States Department of Agriculture-Agricultural Research Service: Grape Genetics Research Unit, Geneva, NY 14456) for the English editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Daldoul.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daldoul, S., Boubakri, H., Gargouri, M. et al. Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. Mol Biol Rep 47, 3141–3153 (2020). https://doi.org/10.1007/s11033-020-05363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05363-0

Keywords

Navigation