Log in

Nonadditive expression of lipid metabolism pathway-related genes in intestine of hybrids of Nile tilapia females (Oreochromis niloticus) and blue tilapia males (Oreochromis aureus)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Nonadditive expression contributes to heterosis in hybrids. In this study, the expression profiles of twelve lipid metabolism pathway-related genes were investigated in the intestine of Nile tilapia (Oreochromis niloticus) ♀ × blue tilapia (Oreochromis aureus) ♂ hybrid. The expression of genes from the hybrid were assigned to nonadditive and additive expression pattern groups and compared with expression patterns from Nile tilapia and blue tilapia. In the intestine of the hybrid, apoA4B was expressed at intermediate levels, but apoB and MTP were assigned to ELD-B and ELD-N categories, respectively. The LPL and LRP1 showed transgressive up-regulation in the hybrid, but LDLR was assigned to the ELD-B category. For fatty acid uptake related genes, only FABP11a was categorized as nonadditive expression with transgressive up-regulation, while CD36 and FABP3 were categorized as additive expression in the intestine of the hybrid. Two genes in triacylglycerol metabolism, namely, FAS and DGAT2, showed transgressive up-regulation in the hybrid. Most of the genes analyzed in the present study showed nonadditive expression (8 in 12), and five genes showed transgressive up-regulation. These results indicated that the stimulation of lipid metabolism in the hybrid compared to that of its parents. The hyperactive expression of these genes in the hybrid may be associated with the growth and lipid usage vigor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guo HH, Zheng GD, Wu CB, Jiang XY, Zou SM (2018) Comparative analysis of the growth performance and intermuscular bone traits in F1 hybrids of black bream (Megalobrama terminalis) (♀) × topmouth culter (Culter alburnus) (♂). Aquaculture 492:15–23

    Article  Google Scholar 

  2. Li WH, Liu JM, Tan H, Luo LL, Cui JL, Hu J, Wang S, Liu QF, Hu FZ, Tang CC, Ren L, Yang CH, Zhao RR, Tao M, Zhang C, Qin QB, Liu SJ (2018) Asymmetric expression patterns reveal a strong maternal effect and dosage compensation in polyploid hybrid fish. BMC Genomics 19(1):517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chou BS, Shiau SY (1996) Optimal dietary lipid level for growth of juvenile hybrid tilapia, Oreochromis niloticus × Oreochromis aureus. Aquaculture 143(2):185–195

    Article  CAS  Google Scholar 

  4. Wang Y, Cui YB, Yang YX, Cai FS (2000) Compensatory growth in hybrid tilapia, Oreochromis mossambicus × O. niloticus, reared in seawater. Aquaculture 189(1-2):101–108

    Article  Google Scholar 

  5. Bahurmiz OM, Ng WK (2007) Effects of dietary palm oil source on growth, tissue fatty acid composition and nutrient digestibility of red hybrid tilapia, Oreochromis sp., raised from stocking to marketable size. Aquaculture 262(2):382–392

    Article  CAS  Google Scholar 

  6. Sardella BA, Cooper J, Gonzalez RJ, Brauner CJ (2004) The effect of temperature on juvenile Mozambique tilapia hybrids (Oreochromis mossambicus × O. urolepis hornorum) exposed to full-strength and hypersaline seawater. Comp Biochem Physiol A Mol Integr Physiol 137(4):621–629

    Article  CAS  PubMed  Google Scholar 

  7. Cai WQ, Li SF, Ma JY (2004) Diseases resistance of Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and their hybrid (female Nile tilapia × male blue tilapia) to Aeromonas sobria. Aquaculture 229(1–4):79–87

    Article  Google Scholar 

  8. Bartley DM, Rana K, Immink AJ (2000) The use of inter-specific hybrids in aquaculture and fisheries. Rev Fish Biol Fish 10(3):325–337

    Article  Google Scholar 

  9. Douglas RT (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11(2):107–184

    Article  Google Scholar 

  10. Izquierdo MS, Socorro J, Arantzamendi L, Hernández-Cruz CM (2000) Recent advances in lipid nutrition in fish larvae. Fish Physiol Biochem 22(2):97–107

    Article  CAS  Google Scholar 

  11. Iqbal J, Hussain MM (2009) Intestinal lipid absorption. Am J Physiol Endocrinol Metab 296(6):E1183–E1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Richard N, Kaushik S, Larroquet L, Panserat S, Corraze G (2006) Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Br J Nutr 96(2):299–309

    Article  CAS  PubMed  Google Scholar 

  13. Olofsson SO, Stillemark-Billton P, Asp L (2000) Intracellular assembly of VLDL: two major steps in separate cell compartments. Trends Cardiovasc Med 10(8):338–345

    Article  CAS  PubMed  Google Scholar 

  14. Mead JR, Irvine SA, Ramji DP (2002) Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med 80(12):753–769

    Article  CAS  PubMed  Google Scholar 

  15. Otarod JK, Goldberg IJ (2004) Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr Atheroscler Rep 6(5):335–342

    Article  PubMed  Google Scholar 

  16. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806

    Article  CAS  PubMed  Google Scholar 

  17. Yan J, Liao K, Wang TJ, Mai KS, Xu W, Ai QH (2015) Dietary lipid levels influence lipid deposition in the liver of large yellow croaker (Larimichthys crocea) by regulating lipoprotein receptors, fatty scid uptake and triacylglycerol synthesis and catabolism at the transcriptional level. PLoS ONE 10(6):e0129937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qi B, Huang W, Zhu B, Zhong XF, Guo JH, Zhao N, Xu CM, Zhang HK, Pang JS, Han FP, Liu B (2012) Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biol 10:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14(7):471–482

    Article  CAS  PubMed  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  21. Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoo MJ, Szadkowski E, Wendel JF (2012) Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110(2):171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tung PH, Shiau SY (1991) Effects of meal frequency on growth performance of hybrid tilapia, Oreochromis niloticus × O. aureus, fed different carbohydrate diets. Aquaculture 92:343–350

    Article  Google Scholar 

  24. Yue YR, Zhou QC (2008) Effect of replacing soybean meal with cottonseed meal on growth, feed utilization, and hematological indexes for juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. Aquaculture 284(1):185–189

    Article  CAS  Google Scholar 

  25. Huang CH, Huang SL (2004) Effect of dietary vitamin E on growth, tissue lipid peroxidation, and liver glutathione level of juvenile hybrid tilapia, Oreochromis niloticus × O. aureus, fed oxidized oil. Aquaculture 237(1–4):381–389

    Article  CAS  Google Scholar 

  26. Coyle Shawn D, Mengel Gordon J, Tidwell James H, Webster Carl D (2004) Evaluation of growth, feed utilization, and economics of hybrid tilapia, Oreochromis niloticus × Oreochromis aureus, fed diets containing different protein sources in combination with distillers dried grains with solubles. Aquac Res 35(4):365–370

    Article  Google Scholar 

  27. Al-Harbi AH, Naim Uddin M (2004) Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus × Oreochromis aureus) cultured in earthen ponds in Saudi Arabia. Aquaculture 229(1):37–44

    Article  Google Scholar 

  28. Karathanasis SK, Oettgen P, Haddad IA, Antonarakis SE (1986) Structure, evolution, and polymorphisms of the human apolipoprotein A4 gene (APOA4). Proc Natl Acad Sci 83(22):8457–8461

    Article  CAS  PubMed  Google Scholar 

  29. van Greevenbroek MJ, de Bruin WT (1998) Chylomicron synthesis by intestinal cells in vitro and in vivo. Atherosclerosis 141(Suppl 1):S9–S16

    Article  PubMed  Google Scholar 

  30. Hussain MM, Shi J, Dreizen P (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 44(1):22–32

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Eckel RH (2009) Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 297(2):E271–E288

    Article  CAS  PubMed  Google Scholar 

  32. Hey PJ, Twells RCJ, Phillips MS, Yusuke N, Brown SD, Kawaguchi Y, Cox R, Guochun X, Dugan V, Hammond H, Metzker ML, Todd JA, Hess JF (1998) Cloning of a novel member of the low-density lipoprotein receptor family. Gene 216(1):103–111

    Article  CAS  PubMed  Google Scholar 

  33. Takayama Y, May P, Anderson RGW, Herz J (2005) Low density lipoprotein receptor-related protein 1 (LRP1) controls endocytosis and c-CBL-mediated ubiquitination of the platelet-derived growth factor receptor β (PDGFRβ). J Biol Chem 280(18):18504–18510

    Article  CAS  PubMed  Google Scholar 

  34. Stupar RM, Springer NM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173(4):2199–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karanth S, Denovan-Wright Eileen M, Thisse C, Thisse B, Wright Jonathan M (2008) The evolutionary relationship between the duplicated copies of the zebrafish fabp11 gene and the tetrapod FABP4, FABP5, FABP8 and FABP9 genes. FEBS J 275(12):3031–3040

    Article  CAS  PubMed  Google Scholar 

  36. Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, Pasternack GR (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci 91(14):6379–6383

    Article  Google Scholar 

  37. Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM, Farese RV (2004) Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem 279(12):11767–11776

    Article  CAS  PubMed  Google Scholar 

  38. Lu KL, Xu WN, Wang LN, Zhang DD, Zhang CN, Liu WB (2014) Hepatic β-oxidation and regulation of carnitine palmitoyltransferase (CPT) I in blunt snout bream Megalobrama amblycephala fed a high fat diet. PLoS ONE 9(3):e93135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang D, Pan Q, Cui C, Tan C, Ge X, Shao Y, Li Z (2015) Genome-specific differential gene expressions in resynthesized brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq. Front Plant Sci 6:957

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31460688, 31672627, 31760756), the Natural Science Foundation of Guangxi (Grant No. 2017GXNSFFA198001); Public welfare of institute research funding in Guangxi (Grant No. CXIF-2016-14) and China Agriculture Research System (CARS-46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Zhong.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest. The funding agencies had no influence on the experimental design and the conclusions.

Ethical approval

All animal handling complied with the requirements of the Animal Research and Ethics Committees of Guangxi Academy of Fishery Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, X., Xu, Q. et al. Nonadditive expression of lipid metabolism pathway-related genes in intestine of hybrids of Nile tilapia females (Oreochromis niloticus) and blue tilapia males (Oreochromis aureus). Mol Biol Rep 46, 425–432 (2019). https://doi.org/10.1007/s11033-018-4490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4490-3

Keywords

Navigation