Log in

Genome-wide association map** of resistance to the foliar diseases septoria nodorum blotch and tan spot in a global winter wheat collection

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Septoria nodorum blotch (SNB) and tan spot, caused by the necrotrophic fungal pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis, respectively, often occur together as a leaf spotting disease complex on wheat (Triticum aestivum L.). Both pathogens produce necrotrophic effectors (NEs) that contribute to the development of disease. Here, genome-wide association analysis of a diverse panel of 264 winter wheat lines revealed novel loci on chromosomes 5A and 5B associated with sensitivity to the NEs SnTox3 and SnTox5 in addition to the known sensitivity genes for NEs Ptr/SnToxA, SnTox1, SnTox3, and SnTox5. Sensitivity loci for SnTox267 and Ptr ToxB were not detected. Evaluation of the panel with five P. nodorum isolates for SNB development indicated the Snn3-SnTox3 and Tsn1-SnToxA interactions played significant roles in disease development along with additional QTL on chromosomes 2A and 2D, which may correspond to the Snn7-SnTox267 interaction. For tan spot, the Tsc1-Ptr ToxC interaction was associated with disease caused by two isolates, and a novel QTL on chromosome 7D was associated with a third isolate. The Tsn1-ToxA interaction was associated with SNB but not tan spot. Therefore some, but not all, of the previously characterized host gene-NE interactions in these pathosystems play significant roles in disease development in winter wheat. Based on these results, breeders should prioritize the selection of resistance alleles at the Tsc1, Tsn1, Snn3, and Snn7 loci as well as the 2A and 7D QTL to obtain good levels of resistance to SNB and tan spot in winter wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adhikari TB, Jackson EW, Gurung S, Hansen JM, Bonman JM (2011) Association map** of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA National Small Grains Collection. Phytopathology 101:1301–1310

    PubMed  Google Scholar 

  • Ali S, Francl LJ, De Wolf ED (1999) First report of Pyrenophora tritici-repentis Race 5 from North America. Plant Dis 83:591

    CAS  PubMed  Google Scholar 

  • Ali S, Gurung S, Adhikari TB (2010) Identification and characterization of novel isolates of Pyrenophora tritici-repentis from Arkansas. Plant Dis 94:229–235

    CAS  PubMed  Google Scholar 

  • AlTameemi R, Gill HS, Ali S, Ayana G, Halder J, Sidhu JS, Gill US, Turnipseed B, Gonzalez Hernandez JL, Sehgal SK (2021) Genome-wide association analysis permits characterization of Stagonospora nodorum blotch (SNB) resistance in hard winter wheat. Sci Rep 11:12570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballini E, Tavaud M, Ducasse A, Sanchez D, Paux E, Kitt J, Charmet G, Audigeos D, Roumet P, David J, Morel J (2020) Genome wide association map** for resistance to multiple fungal pathogens in a panel issued from a broad composite cross-population of tetraploid wheat Triticum turgidum. Euphytica 216:92

    CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) Tassel: software for association map** of complex traits in diverse samples. Abstract Bioinformatics 23(19):2633–2635. https://doi.org/10.1093/bioinformatics/btm308

  • Bulli P, Zhang J, Chao S, Chen X, Pumphrey M (2016) Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3 Bethesda https://doi.org/10.1534/g3.116.028407

  • Ciuffetti LM, Tuori RP, Gaventa JM (1997) A single gene encodes a selective toxin causal to the development of tan spot of wheat. Plant Cell 9:135–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciuffetti LM, Manning VA, Pandelova I, Betts MF, Martinez JP (2010) Host-selective toxins, PtrToxA and PtrToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. New Phytol 187:911–919

    CAS  PubMed  Google Scholar 

  • Cório da Luz W, Hosford RM Jr (1980) Twelve Pyrenophora trichostoma races for virulence to wheat in the Central Plains of North America. Phytopathology 70:1193–1196

    Google Scholar 

  • Corsi B, Percival-Alwyn L, Downie RC, Venturini L, Iagallo EM, Campos Mantello C, McCormich-Barnes C, See PT, Oliver RP, Moffat CS, Cockram J (2020) Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis, the causal agent of tan spot. Theor Appl Genet 133:935–950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cowger C, Ward B, Brown-Guedira G, Brown JKM (2020) Role of effector-sensitivity gene interactions and durability of quantitative resistance to Septoria nodorum blotch in Eastern US wheat. Front Plant Sci 5:25. https://doi.org/10.3389/fpls.2020.00155

    Article  Google Scholar 

  • De Wolf ED, Effertz RJ, Ali S, Francl LJ (1998) Vistas of tan spot research. Can J Plant Pathol 20:349–370

    Google Scholar 

  • Dinglasan EG, Singh D, Shankar M, Afanasenko O, Platz G, Godwin ID, Voss-Fels KP, Hickey LT (2019) Discovering new alleles for yellow spot resistance in the Vavilov wheat collection. Theor Appl Genet 132:149–162

    CAS  PubMed  Google Scholar 

  • Downie RC, Bouvet L, Furuki E, Gosman N, Gardner KA, Mackay IJ, Campos Mantello C, Mellers G, Phan HTT, Rose GA, Tan KC, Oliver RP, Cockram J (2018) Assessing European wheat sensitivities to Parastagonospora nodorum necrotrophic effectors and fine-map** the Snn3-B1 locus conferring sensitivity to the effector SnTox3. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00881

    Article  PubMed  PubMed Central  Google Scholar 

  • Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ (2002) Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology 92:527–533

    CAS  PubMed  Google Scholar 

  • Eyal Z (1987) The Septoria diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

  • Faris JD, Friesen TL (2020) Plant genes hijacked by necrotrophic fungal pathogens. Curr Opin Plant Biol 56:74–80

    CAS  PubMed  Google Scholar 

  • Faris JD, Zhang Z, Lu H, Lu Z, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci U S A 107:13544–13549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faris JD, Zhang Z, Rasmussen JB, Friesen TL (2011) Variable expression of the Stagonospora nodorum effector SnToxA among isolates is correlated with levels of disease in wheat. Mol Plant Microbe Interact 24:1419–1426

    CAS  PubMed  Google Scholar 

  • Faris JD, Abeysekara NS, McClean PE, Xu SS, Friesen TL (2012) Tan spot susceptibility governed by the Tsn1 locus and race-specific resistance quantitative trait loci in a population derived from the wheat lines Salamouni and Katepwa. Mol Breed 30:1669–1678

    Google Scholar 

  • Faris LD, Liu Z, Xu SS (2013) Genetics of tan spot resistance in wheat. Theor Appl Genet 126:2197–2217

    CAS  PubMed  Google Scholar 

  • Faris JD, Overlander ME, Kariyawasam GK, Carter A, Xu SS, Liu Z (2020) Identification of a major dominant gene for race-nonspecific tan spot resistance in wild emmer wheat. Theor Appl Genet 133:829–841

    CAS  PubMed  Google Scholar 

  • Francki MG, Walker E, McMullan CJ, Morris WG (2020) Multi-location evaluation of global wheat lines reveal multiple QTL for adult plant resistance to Septoria nodorum blotch (SNB) detected in specific environments and in response to different isolates. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00771

    Article  PubMed  PubMed Central  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular map** of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor Appl Genet 109:464–471

    CAS  PubMed  Google Scholar 

  • Friesen TL, Faris JD (2010) Characterization of the wheat-Stagonospora nodorum system: what is the molecular basis of this quantitative necrotrophic disease interaction? Can J Plant Pathol 32:20–28

    CAS  Google Scholar 

  • Friesen TL, Faris JD (2021) Characterization of effector-target interactions in necrotrophic pathosystems reveals trends and variation in host manipulation. Annu Rev Phytopathol 59:77–98

    CAS  PubMed  Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    CAS  PubMed  Google Scholar 

  • Friesen TL and Faris JD (2012) Characterization of plant-fungal interactions involving necrotrophic effector-producing plant pathogens. In: Bolton M, Thomma B (eds) Plant fungal pathogens. Methods in molecular biology (methods and protocols), vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501_12

  • Galagedara N, Liu Y, Fiedler J, Shi G, Chiao S, Xu SS, Faris JD, Li X, Liu Z (2020) Genome-wide association map** of tan spot resistance in a worldwide collection of durum wheat. Theor Appl Genet 133:2227–2237

    CAS  PubMed  Google Scholar 

  • Gao Y, Liu Z, Faris JD, Richards J, Brueggeman RS, Li X, Oliver RP, McDonald BA, Friesen TL (2016) Validation of genome-wide association studies as a tool to identify virulence factors in Parastagonospora nodorum. Phytopathology 106:1177–1185

    CAS  PubMed  Google Scholar 

  • Ghaderi F, Sharifnabi B, Javan-Nikkhah M, Brunner PC, McDonald BA (2020) SnToxA, SnTox1, and SnTox3 originated in Parastagonospora nodorum in the Fertile Crescent. Plant Pathol 69:1482–1491

    CAS  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, del Rio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophoratritici-repentis races 1 and 5 in spring wheat using association analysis. Theor Appl Genet 123:1029–1041

    CAS  PubMed  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, **ong M, Brown-Guedira G, Adhikari TB (2014) Genome-wide association study reveals novel quantitative loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS ONE 9:e108179

    PubMed  PubMed Central  Google Scholar 

  • Halder J, Zhang J, Ali S, Sidhu JS, Gill HS, Talukder SK, Kleinjan J, Turnipseed B, Sehgak SK (2019) Mining and genomic characterization of resistance to tan spot, Stagonospora nodorum blotch (SNB), and Fusarium head blight in Watkins core collection of wheat landraces. BMC Plant Biol 19:480

    PubMed  PubMed Central  Google Scholar 

  • Huang M, Liu X, Zhou Y, Summers RM, Zhang Z (2019) BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 8:giy154

    PubMed  Google Scholar 

  • Juliana P, Singh RP, Pawan KS, Poland JA, Bergstrom GC, Huerta-Espino J, Bhavani S, Crossa J, Sorrells ME (2018) Genome-wide association map** for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor Appl Genet 131:1405–1422

    PubMed  PubMed Central  Google Scholar 

  • Kariyawasam GK, Carter AH, Rasmussen JB, Faris JD, Xu SS, Mergoum M, Liu Z (2016) Genetic relationships between race-nonspecific and race-specific interactions in the wheat-Pyrenophora tritici-repentis pathosystem. Theor Appl Genet 129:897–908

    CAS  PubMed  Google Scholar 

  • Kariyawasam GK, Hussain W, Easterly A, Guttieri M, Belamkar V, Poland J, Venegas J, Baenziger S, Marais F, Rasmussen JB, Liu Z (2018) Identification of quantitative trait loci conferring resistance to tan spot in a biparental population derived from two Nebraska hard red winter wheat cultivars. Mol Breed 38:140

    Google Scholar 

  • Kariyawasam GK, Wyatt N, Shi G, Liu S, Yan C, Ma Y, Zhong S, Rasmussen JB, Moolhuijzen P, Moffat CS, Friesen TL, Liu Z (2021) A genome-wide genetic linkage map and reference quality genome sequence for a new race in the wheat pathogen Pyrenophora tritici-repentis. Fungal Genet Biol 152:103571

    CAS  PubMed  Google Scholar 

  • Kariyawasam GK, Richards JK, Wyatt NA, Running KLD, Xu SS, Liu Z, Borowicz P, Faris JD, Friesen TL (2022) The Parastagonospora nodorum necrotrophic effector SnTox5 targets the wheat gene Snn5 and facilitates entry into the lead mesophyll. New Phytol 233:409–426

    CAS  PubMed  Google Scholar 

  • Kokhmetova A, Sehgal D, Ali S, Atishova M, Kumarbayeva M, Leonova I, Dreisigacker S (2021) Genome-wide association study of tan spot resistance in a hexaploid wheat collection from Kazakhstan. Front Genet. https://doi.org/10.3389/fgene.2020.581214

    Article  PubMed  PubMed Central  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2014) Genome-wide association map** of tan spot resistance (Pyrenophoratritici-repentis) in European winter wheat. Mol Breed 34:363–371

    CAS  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamari L, Bernier CC (1989a) Evaluation of wheat lines and cultivars to tan spot [Pyrenophora Tritici-Repentis] based on lesion type. Can J Plant Pathol 11:49–56

    Google Scholar 

  • Lamari L, Bernier CC (1989b) Toxin of Pyrenophora tritici-repentis: host-specificity, significance in disease, and inheritance of host reaction. Phytopathology 79:740–744

    CAS  Google Scholar 

  • Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB (2003) The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology 93:391–396

    CAS  PubMed  Google Scholar 

  • Lin M, Corsi B, Ficke A, Tan KC, Cockram J, Lillemo M (2020) Genetic map** using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Theor Appl Genet 133:785–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    CAS  PubMed  Google Scholar 

  • Liu ZH, Faris JD, Meinhardt SW, Ali S, Rasmussen JB, Friesen TL (2004a) Genetic and physical map** of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology 94:1056–1060

    CAS  PubMed  Google Scholar 

  • Liu ZH, Friesen TL, Rasmussen JB, Ali S, Meinhardt SW, Faris JD (2004b) Quantitative trait loci analysis and map** of seedling resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology 94:1061–1067

    CAS  PubMed  Google Scholar 

  • Liu Z, Faris JD, Oliver RP, Tan KC, Solomon PS, McDonald MC, McDonald BA, Nunez A, Lu S, Rasmussen JB, Friesen TL (2009) SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog 5:e1000581

    PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhang Z, Faris JD, Oliver RP, Syme R, McDonald MC, McDonald BA, Solomon PS, Lu S, Shelver WL, Xu S, Friesen TL (2012) The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog 8:e1002467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, El-Basyoni I, Kariuawasam G, Zhang G, Fritz A, Hansen J, Marias F, Friskop A, Chao S, Akhunov E, Baenziger PS (2015) Evaluation and association map** of resistance to tan spot and stagonospora nodorum blotch in adapted winter wheat germplasm. Plant Dis 99:1333–1341

    CAS  PubMed  Google Scholar 

  • Liu X, Huang M, Fan B, Buckler E, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12:e1005767

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Salsman E, Wang R, Galagedara N, Zhang Q, Fiedler JD, Liu Z, Xu S, Faris JD, Li X (2020) Meta-QTL analysis of tan spot resistance in wheat. Theor Appl Genet 133:2363–2375

    CAS  PubMed  Google Scholar 

  • Lozano-Ramirez N, Dreisigacker S, Sansaloni CP, He X, Islas SS, Pérez-Rodriguez P, Carballo AC, Nava-Díaz C, Kishii M, Singh PK (2022) Genome-wide association study for resistance to tan spot in synthetic hexaploid wheat. Plants (basel) 11:433

    CAS  PubMed  Google Scholar 

  • Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, **a G, Fu D, Kang Z, Ni F (2021) WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant 14:1965–1968

    CAS  PubMed  Google Scholar 

  • Martinez JP, Ottum SA, Ali S, Francl LJ, Ciuffetti LM (2001) Characterization of the ToxB gene from Pyrenophora tritici-repentis. Mol Plant Microbe Interact 14:675–677

    CAS  PubMed  Google Scholar 

  • McDonald MC, Oliver RP, Friesen TL, Brunner PC, McDonald BA (2013) Global diversity and distribution of three necrotrophic effectors in Phaeospharia nodorum and related species. New Phytol 199:241–251

    CAS  PubMed  Google Scholar 

  • Mihalyov PD, Nichols VA, Bulli P, Rouse MN, Pumphrey MO (2017) Multi-locus mixed model analysis of stem rust resistance in winter wheat. Plant Genome. https://doi.org/10.3835/plantgenome2017.01.0001

    Article  PubMed  Google Scholar 

  • Möller M, Stukenbrock EH (2017) Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 15:756–771

    PubMed  Google Scholar 

  • Moolhuijzen P, Theen See P, Hane JK, Shi G, Liu Z, Oliver RP, Moffat CS (2018) Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity. BMC Genomics 19:279

    PubMed  PubMed Central  Google Scholar 

  • Moolhuijzen P, Theen See P, Moffat CS (2020) PacBio genome sequencing reveals new insights into the genomic organization of the multi-copy ToxB gene of the wheat fungal pathogen Pyrenophora tritici-repentis. BMC Genomics 21:645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhaong GY, Myles S (2015) LinkImpute: fast and accurate genotype imputation for nonmodel organisms abstract. G3 Genes|Genomes|Genetics 5(11):2383–2390. https://doi.org/10.1534/g3.115.021667

  • Muleta KT, Chen X, Pumphrey X (2020) Genome-wide map** of resistance to stripe rust caused by Puccinia striiformis f. sp. tritici in hexaploid wheat. Crop Sci 60:115–131

    CAS  Google Scholar 

  • Muqaddasi QH, Kamal R, Mirdita V, Rodemann B, Ganal MW, Reif JC, Röder MS (2021) Genome-wide association studies and prediction of tan spot (Pyrenophora tritici-repentis) infection in European winter wheat via different marker platforms. Genes (basel) 12:490

    CAS  PubMed  Google Scholar 

  • Noriel AJ, Sun X, Bockus W, Bai G (2011) Resistance to tan spot and insensitivity to Prt ToxA in wheat. Crop Sci 51:1059–1067

    Google Scholar 

  • Pallotta MA, Warner P, Fox RL, Kuchel H, Jefferies SJ, Langridge P (2003) Marker assisted wheat breeding in the southern region of Australia. In: Pogna NE, Romano M, Pogna EA, Galterio Z (eds) Proceedings of the 10th international wheat genetics symposium, Paestum, Italy, 1-6 September, 2003. Instituto Sperimentale per la Cerealicoltura, Sant'Angelo Lodigiano, pp 789–791

  • Patel JS, Mamidi S, Bonman JM, Adhikari TB (2013) Identification of QTL in spring wheat associated with resistance to a novel isolate of Pyrenophoratritici-repentis. Crop Sci 53:842–852

    CAS  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:e190

    PubMed  PubMed Central  Google Scholar 

  • Perez-Lara E, Semagn K, Tran VA, Ciechanowska I, Chen H, Iqbal M, N’Diaye A, Pozniak C, Sterlkov SE, Hucl PJ, Graf RJ, Randhawa H, Spaner D (2017) Population structure and genomewide association analysis of resistance to disease and insensitivity to Ptr toxins in Canadian spring wheat using 90K SNP array. Crop Sci 57:1522–1539

    CAS  Google Scholar 

  • Peters Haugrud AR, Zhang Z, Richards JK, Friesen TL, Faris JD (2019) Genetics of variable disease expression conferred by inverse gene-for-gene interactions in the wheat-Parastagonospora nodorum pathosystem. Plant Physiol 180:420–434

    PubMed  PubMed Central  Google Scholar 

  • Peters Haugrud AR, Zhang Z, Friesen TL, Faris JD (2022) Genetics of resistance to Septoria nodorum blotch in wheat. Theor Appl Genet 135:3685–3707

    CAS  PubMed  Google Scholar 

  • Phan HTT, Rybak K, Furuki E, Breen S, Solomon PS, Oliver RP, Tan KC (2016) Differential effector gene expression underpins epistasis in a plant fungal disease. Plant J 87:343–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phan HTT, Rybak K, Bertazzoni S, Furuki E, Dinglasan E, Hickey LT, Oliver RP, Tan KC (2018) Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies. Theor Appl Genet 131:1223–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phan HTT, Furuki E, Hunziker L, Ryback K, Tan KC (2021) GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum isolates and identification of marker-trait-associations to Septoria nodorum blotch. Sci Rep 11:10085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phuke RM, He X, Juliana P, Bishnoi SK, Singh GP, Kabir MR, Roy KK, Joshi AK, Singh RP, Singh PK (2020) Association map** of seedling resistance to tan spot (Pyrenophora tritici-repentis Race 1) in CIMMYT and South Asian wheat germplasm. Front Plant Sci. https://doi.org/10.3389/fpls.2020.01309

    Article  PubMed  PubMed Central  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A 98:11479–11484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richards JK, Stukenbrock EH, Carpenter J, Liu Z, Cowger C, Faris JD (2019) Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet 15:e1008223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richards JK, Kariyawasam GK, Seneviratne S, Wyatt NA, Xu SS, Liu Z, Faris JD, Friesen TL (2022) A triple threat: the Parastagonospora nodorum SnTox267 effector exploits three distinct host genetic factors to cause disease in wheat. New Phytol 233:427–442

    CAS  PubMed  Google Scholar 

  • Richards JK, Wyatt NA, Liu Z, Faris JD, Friesen TL (2018) Reference quality genome assemblies of three Parastagonospora nodorum isolates differing in virulence on wheat. G3 (Bethesda) 8:393–399

  • Running KLD, Momotaz A, Kariyawasam GK, Zurn JD, Acevedo M, Carter AH, Liu Z, Faris JD (2022) Genomic analysis and delineation of the tan spot susceptibility locus Tsc1 in wheat. Front Plant Sci. https://doi.org/10.3389/fpls.2022.793925

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruud AK, Windju S, Belova T, Friesen TL, Lillemo M (2017) Map** of SnTox3-Snn3 as a major determinant of field susceptibility to Septoria nodorum blotch in the SHA3/CBRD × Naxos population. Theor Appl Genet 130:1361–1374

    CAS  PubMed  Google Scholar 

  • Ruud AK, Dieseth JA, Ficke A, Furuki E, Phan HTT, Oliver RP, Tan KC, Lilemo M (2019) Genome-wide association map** of resistance to Septoria nodorum leaf blotch in a Nordic spring wheat collection. Plant Genome 12:180105

    CAS  Google Scholar 

  • Scrucca L, Fop M, Murphy TB, Raftery AE (2016) McClust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J 8:289–317

    PubMed  PubMed Central  Google Scholar 

  • See PT, Iagallo EM, Oliver RP, Moffat CS (2019) Heterologous expression of the Pyrenophora tritici-repentis effector proteins ToxA and ToxB, and the prevalence of effector sensitivity in Australian cereal crops. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00182

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S (2019) Genetics of wheat domestication and Septoria nodorum blotch susceptibility in wheat. Masters thesis, North Dakota State University

  • Shi G, Zhang Z, Friesen TL, Raats D, Fahima T, Brueggeman RS, Lu S, Trick HN, Liu Z, Chao W, Frenkel Z, Xu SS, Rasmussen JB, Faris JD (2016) The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci Adv 2:e1600822

    PubMed  PubMed Central  Google Scholar 

  • Shi G, Kariyawasam G, Liu S, Leng Y, Zhong S, Ali S, Moolhuijzen P, Moffat CS, Rasmussen JB, Friesen TL, Faris JD, Liu Z (2022) A conserved hypothetical gene is required but not sufficient for Ptr ToxC production in Pyrenophora tritici-repentis. Mol Plant Microbe Interact 35:336–348

    CAS  PubMed  Google Scholar 

  • Shi G, Friesen TL, Saini J, Xu SS, Rasmussen JB, Faris JD (2015) The wheat Snn7 gene confers susceptibility on recognition of the Parastagonospora nodorum necrotrophic effector SnTox7. Plant Genome 8. https://doi.org/10.3835/plantgenome2015.02.0007

  • Singh M, Upadhyaya H (2015) Genetic and genomic resources for grain cereals improvement. Academic Press

    Google Scholar 

  • Singh PK, Crossa J, Duveiller E, Singh RP, Djurle A (2016) Association map** for resistance to tan spot induced by Pyrenophora tritici-repentis race 1 in CIMMYTs historical bread wheat set. Euphytica 207:515–525

    CAS  Google Scholar 

  • Singh RP, Juliana P, Huerta-Espino J, Govindan V, Crespo-Herrera LA, Mondal S, Bhavani S, Singh PK, He X, Ibba MI, Randhawa MS, Kumar U, Joshi AK, Basnet BR, Braun HJ (2022) Achieving genetic gains in practice. Wheat improvement. MP Reynolds and HJ Braun (eds.)

  • Szabo-Hever A, Singh G, Peters Haugrud AR, Running KLD, Seneviratne S, Zhang Z, Shi G, Bassi FM, Maccaferri M, Cattivelli L, Tuberosa R, Friesen TL, Liu Z, Xu SS, Faris JD (2023) Association map** of resistance to tan spot in the Global Durum Panel. Phytopathology https://doi.org/10.1094/PHYTO-02-23-0043-R

  • Tabangin ME, Woo JG, Martin LJ (2009) The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proc 3:S41

    PubMed  PubMed Central  Google Scholar 

  • Turner SD (2018) qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. J Open Source Softw 3:731

    Google Scholar 

  • Virdi SK, Liu Z, Overlander ME, Zhang Z, Xu SS, Friesen TL, Faris JD (2016) New insights into the roles of host gene-necrotrophic effector interactions in governing susceptibility of durum wheat to tan spot and Septoria nodorum blotch. G3 (Bethesda) 6:4139–4150

  • Wang J, Zhang Z (2021) GAPIT version 3:boosting power and accuracy for genomic association and prediction. Genomics Proteomics Bioinformatics 19:629–640

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L et al (2014) Characterization of polyploidy wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

  • Xu Y, Li P, Yang Z, Xu C (2017) Genetic map** of quantitative trait loci in crops. Crop J 5:175–184

    Google Scholar 

  • Zhang Z, Friesen TL, Xu SS, Shi G, Liu Z, Rasmussen JB, Faris JD (2011) Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. Plant J 65:27–38

    CAS  PubMed  Google Scholar 

  • Zhang Z, Running KLD, Seneviratne S, Peters Haugrud AR, Szabo-Hever A, Shi G, Brueggeman R, Xu SS, Friesen TL, Faris JD (2021) A protein kinase-major sperm protein gene hijacked by a necrotrophic fungal pathogen triggers disease susceptibility in wheat. Plant J 106:720–732

    CAS  PubMed  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean X, Marjoram P, Nordborg M (2007) An Arabidopsis example of association map** in structured samples. PLoS Genet 3:e4

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Danielle Holmes, Cayley Steen, Erika Shay Bauer, Molly Holt, Jonathan Schwartz, Brandon Rasmusson, Lydia Lyons, Megan Overlander, and Stephanie McCoy for their help with greenhouse work and phenoty**. We would like to thank Gayan Kariyawasam and Jonathan Richards for their assistance with fungal isolates. We would like to thank Nathan Wyatt and Jason Fiedler for assistance with GWAS analysis. Lastly, we would like to thank Mike Pumphrey for providing seed for this experiment. This research was supported in part by an appointment to the Agricultural Research Service (ARS) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the US Department of Energy (DOE) and the US Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664. All opinions expressed in this paper are the author’s and do not necessarily reflect the policies and views of USDA, DOE, or ORAU/ORISE. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Funding

This research was supported by USDA-ARS CRIS 3060–21000-038-00D.

Author information

Authors and Affiliations

Authors

Contributions

ARPH, TLF, ZL, and JDF conceived and designed the experiments. ARPH, GS, SS, KLDR, ZZ, GS, ASH, KA, and ZL performed the experiments. ZL and TLF contributed materials. ARPH analyzed the data. The first draft of the manuscript was written by ARPH and JDF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Justin D. Faris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 70 KB)

Supplementary file2 (DOCX 1148 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters Haugrud, A.R., Shi, G., Seneviratne, S. et al. Genome-wide association map** of resistance to the foliar diseases septoria nodorum blotch and tan spot in a global winter wheat collection. Mol Breeding 43, 54 (2023). https://doi.org/10.1007/s11032-023-01400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-023-01400-5

Keywords

Navigation