Log in

Positional map** and identification of novel quantitative trait locus responsible for UV-B radiation tolerance in soybean [Glycine max (L.) Merr.]

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The amount of ultraviolet-B radiation (UV-B: 280–320 nm) reaching Earth’s surface is expected to increase due to stratospheric ozone depletion. This could cause significant biological damage in plants, and serious yield losses in crops. Soybean [Glycine max (L.) Merr.], a major legume crop, is known to be sensitive to UV-B radiation. Thus, develo** a UV-B-tolerant soybean is an efficient and economical strategy to avoid putative yield losses through increased UV-B irradiation. The objective of this study is to identify the novel quantitative trait loci (QTLs) for UV-B tolerance in the soybean using high-density genetic linkage map**. One hundred and fifteen F8-derived F12 recombinant inbred lines developed from a cross between the UV-B susceptible cultivar, Keunol, and a tolerant breeding line, Iksan 10, were used. Three categories of phenotypic traits were scored: degree of leaf color change, degree of leaf shape change and degree of total plant damage. A genome-wide molecular genetic linkage map containing 8691 single nucleotide polymorphism markers was constructed using the recently developed genoty** platform, the 180K Axiom SoyaSNP assay. Using composite interval map** analysis, one major candidate QTL on chromosome 7 was identified and designated qUVBT1, and is located between two flanking makers, AX-90437826 and AX-90317546, within 1.6 cM, corresponding to a ~24-kb physical region with six annotated gene models. One of them is a homolog of yeast RAD23, which has previously been reported to be a UV excision repair protein. This result could be valuable in breeding new UV-B-tolerant soybean cultivars and elucidating the UV-B response mechanism in soybean plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

QTL:

Quantitative trait locus

SNP:

Single nucleotide polymorphism

RIL:

Recombinant inbred line

DTP:

Degree of total plant damage

DLC:

Degree of leaf color chlorosis

DLS:

Degree of leaf shape change

References

  • Chung WH, Jeong N, Kim J, Lee WK, Lee YG, Lee SH, Yoon W, Kim JH, Choi IY, Choi HK, Moon JK, Kim N, Jeong SC (2014) Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes. DNA Res 21(2):153–167. doi:10.1093/dnares/dst047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer LM, Book AJ, Lee KH, Lin YL, Fu H, Vierstra RD (2010) The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis. Plant Cell 22(1):124–142. doi:10.1105/tpc.109.072660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci. doi:10.2135/cropsci1971.0011183X001100060051x

    Google Scholar 

  • Fina JP, Casati P (2015) HAG3, a histone acetyltransferase, affects UV-B responses by negatively regulating the expression of DNA repair enzymes and sunscreen content in Arabidopsis thaliana. Plant Cell Physiol 56(7):1388–1400. doi:10.1093/pcp/pcv054

    Article  PubMed  Google Scholar 

  • Friedberg EC (2003) DNA damage and repair. Nature 421(6921):436–440. doi:10.1038/nature01408

    Article  PubMed  Google Scholar 

  • Ganal MW, Polley A, Graner EM, Plieske J, Wieseke R, Luerssen H, Durstewitz G (2012) Large SNP arrays for genoty** in crop plants. J Biosci 37(5):821–828

    Article  CAS  PubMed  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38(Database issue):D843–D846. doi:10.1093/nar/gkp798

  • Guzder SN, Sung P, Prakash L, Prakash S (1998) Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. J Biol Chem 273(47):31541–31546

    Article  CAS  PubMed  Google Scholar 

  • Hefner E, Preuss SB, Britt AB (2003) Arabidopsis mutants sensitive to gamma radiation include the homologue of the human repair gene ERCC1. J Exp Bot 54(383):669–680

    Article  CAS  PubMed  Google Scholar 

  • Hidema J, Kumagai T (2006) Sensitivity of rice to ultraviolet-B radiation. Ann Bot 97(6):933–942. doi:10.1093/aob/mcl044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollósy F (2002) Effects of ultraviolet radiation on plant cells. Micron 33(2):179–197. doi:10.1016/S0968-4328(01)00011-7

    Article  PubMed  Google Scholar 

  • Hyten D, Song Q, Choi I-Y, Yoon M-S, Specht J, Matukumalli L, Nelson R, Shoemaker R, Young N, Cregan P (2008) High-throughput genoty** with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116(7):945–952. doi:10.1007/s00122-008-0726-2

    Article  CAS  PubMed  Google Scholar 

  • Hyten D, Cannon S, Song Q, Weeks N, Fickus E, Shoemaker R, Specht J, Farmer A, May G, Cregan P (2010a) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genom 11(1):38

    Article  Google Scholar 

  • Hyten DL, Choi I-Y, Song Q, Specht JE, Carter TE, Shoemaker RC, Hwang E-Y, Matukumalli LK, Cregan PB (2010b) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus map**. Crop Sci 50(3):960–968. doi:10.2135/cropsci2009.06.0360

    Article  CAS  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 120(1–4):191–218. doi:10.1016/j.agrformet.2003.08.015

    Article  Google Scholar 

  • Kim HK, Kang ST, Cho JH, Choung MG, Suh DY (2005) Quantitative trait loci associated with oligosaccharide and sucrose contents in soybean (Glycine max L.). J Plant Biol 48(1):106–112

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol 130(1):234–243. doi:10.1104/pp.005041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12(1):172–175. doi:10.1111/j.1469-1809.1943.tb02321.x

    Article  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053–1059. doi:10.1038/ng.715

    Article  CAS  PubMed  Google Scholar 

  • Lambertson D, Chen L, Madura K (1999) Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153(1):69–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landry LG, Stapleton AE, Lim J, Hoffman P, Hays JB, Walbot V, Last RL (1997) An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation. Proc Natl Acad Sci USA 94(1):328–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Choi M-S, Kim H-T, Yun H-T, Lee B, Chung Y-S, Kim RW, Choi H-K (2015a) Soybean [Glycine max (L.) Merrill]: importance as a crop and pedigree reconstruction of Korean varieties. Plant Breed Biotechnol 3(3):179–196

    Article  Google Scholar 

  • Lee Y-G, Jeong N, Kim JH, Lee K, Kim KH, Pirani A, Ha B-K, Kang S-T, Park B-S, Moon J-K, Kim N, Jeong S-C (2015b) Development, validation and genetic analysis of a large soybean SNP genoty** array. Plant J 81(4):625–636. doi:10.1111/tpj.12755

    Article  CAS  PubMed  Google Scholar 

  • Lenis JM (2011) Genetics of soybean seed lipoxygenases and linolenic acid content in seeds of the soybean wild ancestor. University of Missouri-Columbia

  • Liu Z, Hossain GS, Islas-Osuna MA, Mitchell DL, Mount DW (2000) Repair of UV damage in plants by nucleotide excision repair: arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1. Plant J Cell Mol Biol 21(6):519–528

    Article  CAS  Google Scholar 

  • Reed HE, Teramura A, Kenworthy WJ (1992) Ancestral U.S. soybean cultivars characterized for tolerance to ultravioletB radiation. Crop Sci 32(5):1214–1219

    Article  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183. doi:10.1038/nature08670

    Article  CAS  PubMed  Google Scholar 

  • Shim H-C, Ha B-K, Yoo M, Kang S-T (2015) Detection of quantitative trait loci controlling UV-B resistance in soybean. Euphytica 202(1):109–118. doi:10.1007/s10681-014-1233-y

    Article  CAS  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genoty** array for soybean. PLoS One 8(1):e54985. doi:10.1371/journal.pone.0054985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturm A, Lienhard S (1998) Two isoforms of plant RAD23 complement a UV-sensitive rad23 mutant in yeast. Plant J Cell Mol Biol 13(6):815–821

    Article  CAS  Google Scholar 

  • Teramura AH, Sullivan J, Lydon J (1990) Effects of UV-B radiation on soybean yield and seed quality: a 6 year field study. Physiol Plant 80(1):5–1; (1):5–11

  • Van Ooijen JW (2006) JoinMap 4.0: software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen, Netherlands

  • Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65(6):799–815. doi:10.1007/s11103-007-9244-x

    Article  CAS  PubMed  Google Scholar 

  • Yanqun Z, Yuan L, Haiyan C, Jianjun C (2003) Intraspecific differences in physiological response of 20 soybean cultivars to enhanced ultraviolet-B radiation under field conditions. Environ Exp Bot 50(1):87–97. doi:10.1016/s0098-8472(03)00004-2

    Article  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, **ang H, Zhu B, Lee SH, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33(4):408–414. doi:10.1038/nbt.3096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of National Research Foundation of Korea (Project No. NRF-2013R1A1A2009812).

Author contribution

JSL designed and conducted field tests and drafted the manuscript. SK conducted field tests. BKH helped to construct genetic linkage map and QTL analysis. STK designed the experiment and organized the manuscript. All authors read and approved the final manuscript. Authors state that the experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungtaeg Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.S., Kim, S., Ha, BK. et al. Positional map** and identification of novel quantitative trait locus responsible for UV-B radiation tolerance in soybean [Glycine max (L.) Merr.]. Mol Breeding 36, 50 (2016). https://doi.org/10.1007/s11032-016-0471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0471-1

Keywords

Navigation