Log in

Green synthesis and investigation of antioxidant and antibacterial activity of new derivatives of chromenoazepines employing CuO/TiO2@MWCNTs

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The synthesis of novel, high-yield derivatives of chromenoazepine was investigated in this work. CuO/TiO2@MWCNTs was used as a nanocatalyst in a multicomponent reaction involving 4-aminocumarine, activated acetylenic chemicals, and alkyl bromide in room temperature water to create these novel compounds. Using MCRs of 4-aminocumarine, isothiocyanate, and alkyl bromide in the presence of CuO/TiO2@MWCNTs as nanocatalysts in room-temperature water, chromenothiazepines were synthesized under comparable conditions. The freshly synthesized azepine exhibits antioxidant activity since its NH group has undergone two evaluation processes. Additionally, using two types of Gram-negative bacteria in a disk distribution procedure, the antibacterial activity of recently developed azepines was evaluated, and these compounds also inhibited the growth of Gram-positive bacteria. This method’s benefits include quick reaction times, large product yields, and straightforward catalyst and product separation through easy steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Scheme 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the supplementary material of this article.

References

  1. Reymond J-L, Awale M (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 3(9):649–657. https://doi.org/10.1021/cn3000422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. James MJ, O’Brien P, Taylor RJK, Unsworth WP (2016) Synthesis of Spirocyclic Indolenines. Chem Eur J 22:2856. https://doi.org/10.1002/chem.201503835

    Article  CAS  PubMed  Google Scholar 

  3. Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14:347–361. https://doi.org/10.1016/j.cbpa.2010.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalaria PN, Karad SC, Raval DK (2018) A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem 158:917–936. https://doi.org/10.1016/j.ejmech.2018.08.040

    Article  CAS  PubMed  Google Scholar 

  5. Desai N, Trivedi A, Pandit U, Dodiya A, Rao VK, Desai P (2016) Hybrid bioactive heterocycles as potential antimicrobial agents: a review. Mini Rev Med Chem 16(18):1500–1526. https://doi.org/10.2174/1389557516666160609075620

    Article  CAS  PubMed  Google Scholar 

  6. Fouad MM, El-Bendary ER, Suddek GM, Shehata IA, El-Kerdawy MM (2018) Synthesis and in vitro antitumor evaluation of some new thiophenes and thieno[2,3-d]pyrimidine derivatives. Bioorg Chem 81:587598. https://doi.org/10.1016/j.bioorg.2018.09.022

    Article  CAS  Google Scholar 

  7. Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, Fernandes AR (2015) Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 20:16852–16891. https://doi.org/10.3390/molecules200916852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siddiqui N, Andalip Bawa S, Ali R, Afzal O, Akhtar MJ, Azad B, Kumar R (2011) Antidepressant potential of nitrogen-containing heterocyclic moieties: an updated review. J Pharm Bioallied Sci 3:194–212. https://doi.org/10.4103/0975-7406.80765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sokolova AS, Yarovaya OI, Bormotov NI, Shishkina LN, Salakhutdinov NF (2018) Synthesis and antiviral activity of camphor-based 1,3-thiazolidin-4-one and thiazole derivatives as Orthopoxvirus-reproduction inhibitors. Med Chem Commun 9:1746–1753. https://doi.org/10.1039/C8MD00347E

    Article  CAS  Google Scholar 

  10. Goel A, Agarwal N, Singh FV, Sharon A, Tiwari P, Dixit M, Pratap R, Srivastava AK, Maulik PR, Ram VJ (2004) Antihyperglycemic activity of 2-methyl-3, 4, 5-triaryl-1H-pyrroles in SLM and STZ models. Bioorg Med Chem Lett 14:1089–1092. https://doi.org/10.1016/j.bmcl.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  11. Amir M, Javed SA, Kumar H (2007) Pyrimidine as antiinflammatory agent: a review. Indian J Pharm Sci 69(3):337–343. https://doi.org/10.4103/0250-474X.34540

    Article  CAS  Google Scholar 

  12. Li W, Zhao SJ, Gao F, Lv ZS, Tu JY, Xu Z (2018) Synthesis and in vitro anti-tumor, anti-mycobacterial and anti-HIV activities of diethylene-glycol-tethered bis-isatin derivatives. Chem Select 3:10250–10254. https://doi.org/10.1002/slct.201802185

    Article  CAS  Google Scholar 

  13. Khattab TA, Rehan MA (2018) A review on synthesis of nitrogen-containing heterocyclic dyes for textile fibers—part 2: fused heterocycles. Egypt J Chem 61:989–1018. https://doi.org/10.21608/ejchem.2018.4131.1363

    Article  Google Scholar 

  14. Lamberth C, Dinges J (2012) Bioactive heterocyclic compound classes: agrochemicals. Wiley-VCH Verlag GmbH & Co, KGaA

    Book  Google Scholar 

  15. Anastas PT, Warner JC (1998) Green chem theory and practice. Oxford Univ. Press, New York

    Google Scholar 

  16. Zhi S, Ma X, Zhang W (2019) Consecutive multicomponent reactions for the synthesis of complex molecules. Org Biomol Chem 17:7632–7650. https://doi.org/10.1039/C9OB00772E

    Article  CAS  PubMed  Google Scholar 

  17. Ibarra IA, Islas-Jácome A, González-Zamora E (2018) Synthesis of polyheterocycles via multicomponent reactions. Org Biomol Chem 16:1402–1418. https://doi.org/10.1039/C7OB02305G

    Article  CAS  PubMed  Google Scholar 

  18. Flores-Reyes JC, del Vanesa C, Cotlame-Salinas IA, Ibarra E-Z, Islas-Jácome A (2023) Pseudo-multicomponent reactions. RSC Adv 13:16091–16125. https://doi.org/10.1039/D3RA02746E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graziano G, Stefanachi A, Contino M, Prieto-Díaz R, Ligresti A, Kumar P, Scilimati A, Sotelo E, Leonetti F (2023) Multicomponent reaction-assisted drug discovery: a time- and cost-effective green approach speeding up identification and optimization of anticancer drugs. Int J Mol Sci 24:6581. https://doi.org/10.3390/ijms24076581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thirupathi D, Ramakanth P, Surjyakanta R, Sreekantha Babu J (2023) A concise review of multicomponent reactions using novel heterogeneous catalysts under microwave irradiation. Catalysts 13:1034. https://doi.org/10.3390/catal13071034

    Article  CAS  Google Scholar 

  21. Kaddouri Y, Abrigach F, El Yousfi B, Hammouti B, El KM, Alsalme A, Al-Zaqri N, Warad I, Touzani R (2021) New heterocyclic compounds: synthesis, antioxidant activity and computational insights of nano-antioxidant as ascorbate peroxidase inhibitor by various cyclodextrins as drug delivery systems. Curr Drug Deliv 18:334–349. https://doi.org/10.2174/1567201817999201001205627

    Article  CAS  PubMed  Google Scholar 

  22. Nishiyama T, Hashiguchi Y, Sakata T, Sakaguchi T (2023) Antioxidant activity of the fused heterocyclic compounds, 1,2,3,4-tetrahydroquinolines, and related compounds—effect of ortho-substituents. Polym Degrad Stabil 79:225–230. https://doi.org/10.1016/S0141-3910(02)00285-9

    Article  Google Scholar 

  23. Babizhayev MA, Deyev AI, Yermakovea VN, Brikman IV, Bours J (2004) Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes. Drugs in R & D 5:125–139. https://doi.org/10.2165/00126839-200405030-00001

    Article  CAS  Google Scholar 

  24. Liu L, Meydani M (2002) Combined vitamin C and E supplementation retards early progression of arteriosclerosis in heart transplant patients. Nutr Rev 60:368–371. https://doi.org/10.1301/00296640260385810

    Article  PubMed  Google Scholar 

  25. Al-Messri ZAK (2023) Synthesis, characterization, and effectiveness of pyranopyrimidine derivatives as multi-function additive for lubricating oils. Chem Methodol 7(8):581–593. https://doi.org/10.22034/chemm.2023.393061.1669

    Article  CAS  Google Scholar 

  26. Hossaini ZS, Zareyee D, Sheikholeslami-Farahani F, Vaseghi S, Zamani A (2017) ZnO-NR as the efficient catalyst for the synthesis of new thiazole and cyclopentadienone phosphonate derivatives in water. Heteroat Chem 28:e21362. https://doi.org/10.1002/hc.21362

    Article  CAS  Google Scholar 

  27. Ezzatzadeh E, Farjam MH, Rustaiyan A (2012) Comparative evaluation of antioxidant and antimicrobial activity of crude extract and secondary metabolites isolated from Artemisia kulbadica. Asian Pac J Trop Disease 2:S431–S434. https://doi.org/10.1016/S2222-1808(12)60198-4

    Article  CAS  Google Scholar 

  28. Yavari I, Hossaini ZS, Souri S, Seyfi S (2009) Diastereoselective synthesis of fused [1,3]thiazolo [1,3] oxazins and [1,3] oxazino [2,3-b][1,3] benzothiazoles. Mol Divers 13:439–443. https://doi.org/10.1007/s11030-009-9128-x

    Article  CAS  PubMed  Google Scholar 

  29. Baghernejad B, Sharifi Soltani N (2022) Cerium oxide/alumminium oxide-nanocatalyst promoted the production of dihydropyrano[c]chromene derivatives. Asian J Green Chem 6(2):166–174. https://doi.org/10.22034/ajgc.2022.2.6

    Article  CAS  Google Scholar 

  30. Hoseini Z, Davoodnia A, Pordel M (2021) Another successful application of newly prepared GO-SiC3-NH3-H2PW as highly efficient nanocatalyst for fast synthesis of tetrahydrobenzo[b]pyrans. Adv J Chem A 4(1):68–77. https://doi.org/10.22034/ajca.2021.259593.1228

    Article  CAS  Google Scholar 

  31. Mowlazadeh Haghighi S, Purkhosrow A, Khalafi-Nezhad A, Oftadehgan S (2022) One pot synthesis of heterocyclic dihydroquinoline analogs incorporating quinoline and pyrimidine fused rings in condensation reaction using NCTDSS as a catalyst. Asian J Green Chem 6(3):203222. https://doi.org/10.22034/ajgc.2022.3.3

    Article  CAS  Google Scholar 

  32. Dianat M, Zare A, Hosainpour M (2021) Efficient protocol for the production of pyrimido[4,5-b] quinolines using an organic-inorganic hybrid catalyst. J Med Nanomater Chem 3(4):255–262. https://doi.org/10.48309/JMNC.2021.4.3

    Article  Google Scholar 

  33. Rustaiyan A, Ezzatzadeh E (2011) Sesquiterpene lactones and penta methoxylated flavone from Artemisia kulbadica. Asian J Chem 23:1774–1776

    CAS  Google Scholar 

  34. Moosavi-Zare AR, Goudarziafshar H, Jalilian Z, Hosseinabadi F (2022) Efficient Pseudo-Six-Component Synthesis of Tetrahydro-pyrazolopyridines Using [Zn-2BSMP]Cl2. Chem Methodol 6(8):571–581. https://doi.org/10.22034/chemm.2022.334202.1456

    Article  CAS  Google Scholar 

  35. Rajabi M, Hossaini ZS, Khalilzadeh MA, Datta Sh, Halder M, Mousa SA (2015) Synthesis of a new class of furo[3,2-C]coumarins and its anticancer activity. J Photochem Photobio B: Biol 148:66–72. https://doi.org/10.1016/j.jphotobiol.2015.03.027

    Article  CAS  Google Scholar 

  36. Khazaei R, Khazaei A, Nasrollahzadeh M (2023) Horsetail assisted green synthesis of Fe3O4@SiO2-Pd: a reusable and highly efficient magnetically separable catalyst for Suzuki coupling reactions. J Appl Organomet Chem 3(2):123–133. https://doi.org/10.22034/jaoc.2023.397315.1079

    Article  Google Scholar 

  37. SeifiMansour S, Ezzatzadeh E, Safarkar R (2019) In vitro evaluation of its antimicrobial effect of the synthesized Fe3O4 nanoparticles using Persea Americana extract as a green approach on two standard strains. Asian J Green Chem 3:353–365

    Google Scholar 

  38. Naderi S, Sandaroos R, Peiman S, Maleki B (2023) Synthesis and characterization of a novel crowned schiff base ligand linked to ionic liquid and application of its Mn(III) complex in the epoxidation of olefins. Chem Methodol 7(5):392–404. https://doi.org/10.22034/chemm.2023.385248.1651

    Article  CAS  Google Scholar 

  39. Rostami-Charati F, Hossaini ZS, Rostamian R, Zamani A, Abdoli M (2017) Green synthesis of indol-2-one derivatives from N-alkylisatins in the presence of KF/clinoptilolite nanoparticles. Chem Heterocycl Comp 53:480–483. https://doi.org/10.1007/s10593-017-2077-x

    Article  CAS  Google Scholar 

  40. Hakimi F, Golrasan E (2023) Zinc sulfide (ZnS) nanoparticles: an effective catalyst for synthesis of benzoxazole derivatives. Asian J Green Chem 7(1):47–53. https://doi.org/10.22034/ajgc.2023.1.6

    Article  CAS  Google Scholar 

  41. Hakimi F, Taghvaee M, Golrasan E (2023) Synthesis of benzoxazole derivatives using Fe3O4@SiO2-SO3H nanoparticles as a useful and reusable heterogeneous catalyst without using a solvent. Adv J Chem A 6(2):188–197. https://doi.org/10.22034/ajca.2023.393949.1364

    Article  CAS  Google Scholar 

  42. Rezayati S, Sheikholeslami-Farahani F, Hossaini ZS, Ha**asiri R, Afshari Sharif Abad S (2016) Regioselctive thiocyanation of aromatic and heteroaromatic compounds using a novel bronsted acidic ionic liquid. Comb Chem High Throughput Screen 9:720–727. https://doi.org/10.2174/1386207319666160709191851

    Article  CAS  Google Scholar 

  43. Taghavi R, Rostamnia S (2022) Four-component synthesis of polyhydroquinolines via unsymmetrical hantzsch reaction employing Cu-IRMOF-3 as a robust heterogeneous catalyst. Chem Methodol 6(9):639–648. https://doi.org/10.22034/chemm.2022.340599.1511

    Article  CAS  Google Scholar 

  44. Rostami Charati F, Hossaini ZS, Hosseini-Tabatabaei MR (2011) A simple synthesis of oxaphospholes. Phosphorus Sulfur Silicon Relat Elem 186:1443–1448. https://doi.org/10.1080/10426507.2010.515953

    Article  CAS  Google Scholar 

  45. Baghernejad B, Hojjatitaromsari SM (2022) Preparation of polyhydroquinolines using nano cerium (IV) oxide/zinc oxide as a catalyst. J Appl Organomet Chem 2(2):74–80. https://doi.org/10.22034/jaoc.2022.340645.1054

    Article  Google Scholar 

  46. Sajjadi-Ghotbabadi H, Javanshir SH, Rostami-Charati F (2016) Nano KF/clinoptilolite: an effective heterogeneous base nanocatalyst for synthesis of substituted quinolines in water. Catal Lett 146:338–344. https://doi.org/10.1007/s10562-015-1652-y

    Article  CAS  Google Scholar 

  47. Farajpour M, Vahdat SM, Baghbanian SM, Hatami M (2023) Ag-SiO2 nanoparticles: benign, expedient, and facile nano catalyst in synthesis of decahydroacridines. Chem Methodol 7(7):540–551. https://doi.org/10.22034/chemm.2023.386678.1653

    Article  CAS  Google Scholar 

  48. Hakimi F, Mousavian B, Banifatemeh F, Golrasan E (2021) ZrCl4@Arabic gum: an effective and environmentally friendly catalyst for the preparation of 14-aryl-14H-dibenzo[a, j]xanthene derivatives at ambient temperature without solvent. Asian J Green Chem 5(4):378–386. https://doi.org/10.22034/ajgc.2021.304712.1314

    Article  CAS  Google Scholar 

  49. Mhaibes RM, Arzehgar Z, Mirzaei Heydari M, Fatolahi L (2023) ZnO nanoparticles: a highly efficient and recyclable catalyst for tandem Knoevenagel–Michael–Cyclocondensation reaction. Asian J Green Chem 7(1):1–8. https://doi.org/10.22034/ajgc.2023.1.1

    Article  CAS  Google Scholar 

  50. Yavari I, Nematpour M, Hossaini ZS (2010) Ph3P-mediated one-pot synthesis of functionalized 3, 4-dihydro-2H-1, 3-thiazines from N, N′-dialkylthioureas and activated acetylenes in water. Monatsh fur Chem 141:229–232. https://doi.org/10.1007/s00706-009-0247-y

    Article  CAS  Google Scholar 

  51. Hamidi Zare S, Ghorayshi Nejad MS, Saberi A, Rostami E (2022) A highly efficient and sustainable synthesis of 1-[(1,3-thiazol-2-ylamino) methyl]-2-naphthols under solvent-free conditions using graphene oxide substituted ethane sulfonic acid catalyst. J Med Nanomater Chem 4(3):211–224. https://doi.org/10.48309/jmnc.2022.3.4

    Article  Google Scholar 

  52. Yavari I, Sabbaghan M, Hossaini ZS (2008) Proline-promoted efficient synthesis of 4-aryl-3,4-dihydro-2h,5h-pyrano[3,2-c]chromene-2,5-diones in aqueous media. Synlett 8:1153–1154. https://doi.org/10.1055/s-2008-1072656

    Article  CAS  Google Scholar 

  53. Abed Nashaan F, Sameer Al-Rawi M (2023) Design, synthesis, and biological activity of new thiazolidine-4-one derived from symmetrical 4-amino-1,2,4-triazole. Chem Methodol 7(2):106–111. https://doi.org/10.22034/chemm.2023.362512.1610

    Article  CAS  Google Scholar 

  54. Ezzatzadeh E, Hossaini ZS, Rostamian R, Vaseghi S, Mousavi SF (2017) Fe3O4 magnetic nanoparticles (MNPs) as reusable catalyst for the synthesis of chromene derivatives using multicomponent reaction of 4-hydroxycumarin basis on cheletropic reaction. J Heterocycl Chem 54(5):2906–2911. https://doi.org/10.1002/jhet.2900

    Article  CAS  Google Scholar 

  55. Hani YZ, Zainal IG, Asker FW, Jasim LH (2023) Study of Some Heterocyclic Compounds Made from a New 4(3H)-Quinazolinone and Their Biological and Antioxidant Activities. Chem Methodol 7(5):372–382. https://doi.org/10.22034/chemm.2023.379917.1641

    Article  CAS  Google Scholar 

  56. Ezzatzadeh E, Sheikholeslami-Farahani F, Yadollahzadeh K, Rezayati S (2021) Highly Efficient Reusable Carboxy Group Functionalized Imidazolium Salts for a Simple and Cost-effective Preparation of pyrano[2,3-d]pyrimidinone Derivatives. Comb Chem High Throughput Screen 24:1465–1475. https://doi.org/10.2174/1386207323666201007154343

    Article  CAS  PubMed  Google Scholar 

  57. Farjam MH, Rustaiyan A, Ezzatzadeh E, Jassbi AR (2013) Labdane- type diterpene and two flavones from Salvia sharifii Rech. f. & Esfan. and their biological activities. Iran J Pharm Res 12(2):395–399. https://doi.org/10.22037/ijpr.2013.1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rezayati S, Kalantari F, Ramazani A, Ezzatzadeh E (2021) Isoquinolinium-N-sulfonic acid thiocyanate/H2O2 as an efficient reagent for the thiocyanation of N-bearing. J Sulfur Chem 42(5):575–590. https://doi.org/10.1080/17415993.2021.1929230

    Article  CAS  Google Scholar 

  59. Ghafuri H, Zargari M, Emami A (2023) Green and eco-friendly synthesis of 2-amino-3-cyano-4h-chromene derivatives via eggshell/Fe3O4 as a biodegradable polymer matrix nanocomposite. Asian J Green Chem 7(1):54–69. https://doi.org/10.22034/ajgc.2023.1.7

    Article  CAS  Google Scholar 

  60. Baghernejad B, Zakariayi A (2022) One-Pot synthesis of oxindoles derivatives as effective antimicrobial agents by nano-magnesium aluminate as an effective aatalyst. J Med Nanomater Chem 4(3):225–233. https://doi.org/10.48309/jmnc.2022.3.5

    Article  Google Scholar 

  61. Hamedani NF, Zamani Hargalani F, Rostami-Charati F (2021) Biosynthesis of Cu/KF/Clinoptilolite@MWCNTs nanocomposite and its application as a recyclable nanocatalyst for the synthesis of new Schiff base of benzoxazine derivatives and reduction of organic pollutants. Mol Divers 26(4):2069–2083. https://doi.org/10.1007/s11030-021-10316-1

    Article  CAS  PubMed  Google Scholar 

  62. Dey S, Basak P, Sarkar S, Ghosh P (2022) A design for convenient and greener root towards one-pot multi-component synthesis of substituted pyrano-dichromeneo-dione and chromeno-pyrido-pyrimidinone derivatives using rice husk based heterogeneous catalyst. Asian J Green Chem 6(1):24–39. https://doi.org/10.22034/ajgc.2022.1.3

    Article  CAS  Google Scholar 

  63. Fattahi M, Ezzatzadeh E, Jalilian R, Taheri A (2021) Micro solid phase extraction of cadmium and lead on a new ion-imprinted hierarchical mesoporous polymer via dual-template method in river water and fish muscles: optimization by experimental design. J Hazard Mater 403:123716. https://doi.org/10.1016/j.jhazmat.2020.123716

    Article  CAS  PubMed  Google Scholar 

  64. Rustaiyan A, Masoudi S, Ezzatzadeh E, Akhlaghi H, Aboli J (2011) Composition of the aerial part, flower, leaf and stem oils of eremostachysmacrophyllamontbr. & Auch. and Eremostachyslabiosa bunge. from Iran. J Essent Oil Bear Pl 14:84–88. https://doi.org/10.1080/0972060X.2011.10643904

    Article  CAS  Google Scholar 

  65. Hakimi F, Sharifi-Zarchi A, Golrasan E (2023) Bifunctional polyethylene glycol/ethylenediamine nanomagnetic phase-transfer catalyst: preparation, characterization, and application in knoevenagel condensation. Chem Methodol 7(6):489–498. https://doi.org/10.22034/chemm.2023.392041.1667

    Article  CAS  Google Scholar 

  66. Mohammed AY, Ahamed LS (2022) Synthesis and characterization of new substituted Coumarin derivatives and study their biological activity. Chem Methodol 6(11):813–822. https://doi.org/10.22034/CHEMM.2022.349124.1569

    Article  CAS  Google Scholar 

  67. Meresht AS, Ezzatzadeh E, Dehbandi B, Salimifard M, Rostamian R (2022) Fe3O4/CuO nanocomposite promoted green synthesis of functionalized quinazolines using water extract of lettuce leaves as green media: study of antioxidant activity. Polycycl Aromat Compd 42(7):4793–4808. https://doi.org/10.1080/10406638.2021.1913426

    Article  CAS  Google Scholar 

  68. Muhiebes RM, Fatolahi L, Sajjadifar S (2023) L-proline catalyzed multicomponent reaction for simple and efficient synthesis of tetrahydropyridines derivatives. Asian J Green Chem 7(2):121–131. https://doi.org/10.22034/ajgc.2023.393683.1380

    Article  CAS  Google Scholar 

  69. Jalilian R, Ezzatzadeh E, Taheri A (2021) A novel self-assembled gold nanoparticles-molecularly imprinted modified carbon ionic liquid electrode with high sensitivity and selectivity for the rapid determination of bisphenol A leached from plastic containers. J Environ Chem Eng 9:105513. https://doi.org/10.1016/j.jece.2021.105513

    Article  CAS  Google Scholar 

  70. Karim Hamad B, Ahamed MR (2022) Synthesis and characterization of heterocyclic compounds derived from 2-mercaptobenzothiozole and study of their biological activities. Chem Methodol 6(5):409–417. https://doi.org/10.22034/chemm.2022.332101.1447

    Article  CAS  Google Scholar 

  71. Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB (2005) On water”: unique reactivity of organic compounds in aqueous suspension. Angew Chem Int Ed 44(21):3157–3159. https://doi.org/10.1002/anie.200462883

    Article  CAS  Google Scholar 

  72. Chanda A, Fokin VV (2009) Organic synthesis “on water.” Chem Rev 109(2):725–748. https://doi.org/10.1021/cr800448q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Butler RN, Coyne AG (2016) Organic synthesis reactions on-water at the organic–liquid water interface. Org Biomol Chem 14:9945–9960. https://doi.org/10.1039/C6OB01724J

    Article  CAS  PubMed  Google Scholar 

  74. Min W, Wang T, Li W, Zhang Q, Zhang B, Chen K, Peng S, Li G, Huang J, Wang Q, Wang C (2023) Water-favored reaction mechanism for selective catalytic conversion of 2-methylfuran to 1,4-pentanediol. Chem Eng J 461:141944. https://doi.org/10.1016/j.cej.2023.141944

    Article  CAS  Google Scholar 

  75. Saundane AR, Nandibeoor MK (2015) Synthesis, characterization, and biological evaluation of Schiff bases containing indole moiety and their derivatives. Monatsh Chem 146:1751–1761. https://doi.org/10.1007/s00706-015-1440-9

    Article  CAS  Google Scholar 

  76. Bidchol AM, Wilfred A, Abhijna P, Harish R (2011) Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italica. Food Bioprocess Tech 4:1137–1143. https://doi.org/10.1007/s11947-009-0196-9

    Article  Google Scholar 

  77. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948. https://doi.org/10.1021/jf00018a005

    Article  CAS  Google Scholar 

  78. Yen GC, Duh PD (1994) Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem 42:629–632. https://doi.org/10.1021/jf00039a005

    Article  CAS  Google Scholar 

  79. Yildirim A, Mavi A, Kara AA (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem 49(8):4083–4089. https://doi.org/10.1021/jf0103572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author sincerely would like to acknowledge the Islamic Azad University of Ardabil for its support.

Author information

Authors and Affiliations

Authors

Contributions

All of Authors contributed in all of section of this manuscript.

Corresponding author

Correspondence to Elham Ezzatzadeh.

Ethics declarations

Conflict of interest

No conflicts of interest are disclosed by the writers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20470 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasani, L., Ezzatzadeh, E. & Hossaini, Z. Green synthesis and investigation of antioxidant and antibacterial activity of new derivatives of chromenoazepines employing CuO/TiO2@MWCNTs. Mol Divers (2024). https://doi.org/10.1007/s11030-023-10803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10803-7

Keywords

Navigation