Log in

Discovery of novel Akt1 inhibitors by an ensemble-based virtual screening method, molecular dynamics simulation, and in vitro biological activity testing

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Akt1, as an important member of the Akt family, plays a controlled role in cancer cell growth and survival. Inhibition of Akt1 activity can promote cancer cell apoptosis and inhibit tumor growth. Therefore, in this investigation, a multilayer virtual screening approach, including receptor–ligand interaction-based pharmacophore, 3D-QSAR, molecular docking, and deep learning methods, was utilized to construct a virtual screening platform for Akt1 inhibitors. 17 representative compounds with different scaffolds were identified as potential Akt1 inhibitors from three databases. Among these 17 compounds, the Hit9 exhibited the best inhibitory activity against Akt1 with inhibition rate of 33.08% at concentration of 1 μM. The molecular dynamics simulations revealed that Hit9 and Akt1 could form a compact and stable complex. Moreover, Hit9 interacted with some key residues by hydrophobic, electrostatic, and hydrogen bonding interactions and induced substantial conformation changes in the hinge region of the Akt1 active site. The average binding free energies for the Akt1-CQU, Akt1-Ipatasertib, and Akt1-Hit9 systems were − 34.44, − 63.37, and − 39.14 kJ mol−1, respectively. In summary, the results obtained in this investigation suggested that Hit9 with novel scaffold may be a promising lead compound for develo** new Akt1 inhibitor for treatment of various cancers with Akt1 overexpressed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Shariati M, Meric-Bernstam F (2019) Targeting AKT for cancer therapy. Expert Opin Inv Drug 28(11):977–988. https://doi.org/10.1080/13543784

    Article  CAS  Google Scholar 

  2. Franke T (2008) PI3K/Akt: getting it right matters. Oncogene 27(50):6473–6488. https://doi.org/10.1038/onc.2008.313

    Article  CAS  PubMed  Google Scholar 

  3. **ng Y, Lin NU, Maurer M, Huiqin C, Armeen M (2019) Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res 21:1–12. https://doi.org/10.1186/s13058-019-1154-8

    Article  CAS  Google Scholar 

  4. Yang ZZ, Tschopp O, Hemmings-Mieszczak M (2003) Protein kinase Bα/Akt1 regulates placental development and fetal growth. J Biol Chem 278(34):32124–32131

    Article  CAS  PubMed  Google Scholar 

  5. Rao G, Pierobon M, Kim IK (2017) Inhibition of AKT1 signaling promotes invasion and metastasis of non-small cell lung cancer cells with K-RAS or EGFR mutations. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-06128-9

    Article  CAS  Google Scholar 

  6. Song M, Bode AM, Dong Z (2019) AKT as a therapeutic target for cancer challenging cancer therapy by targeting AKT. Cancer Re 79(6):1019–1031

    Article  CAS  Google Scholar 

  7. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. https://doi.org/10.1016/j.cell.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng JQ, Lindsley CW, Cheng G (2005) The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24(50):7482–7492. https://doi.org/10.1038/sj.onc.1209088

    Article  CAS  PubMed  Google Scholar 

  10. Bono JS, Giorgi UD, Rodrigues DN (2019) Randomized phase II study evaluating Akt blockade with -ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss-ipatasertib in prostate cancer with and without PTEN loss. Clin Cancer Res 25(3):928–936. https://doi.org/10.1158/1078-0432

    Article  PubMed  Google Scholar 

  11. Hirai H, Sootome H, Nakatsuru Y (2010) MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivoMK-2206 sensitizes tumors to chemotherapy. Mol Cancer Ther 9(7):1956–1967

    Article  CAS  PubMed  Google Scholar 

  12. Yu Y, Savage RE, Eathiraj S (2015) Targeting AKT1-E17K and the PI3K/AKT pathway with an allosteric AKT inhibitor, ARQ 092. PLoS ONE 10(10):e0140479. https://doi.org/10.1371/journal.pone.0140479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Politz O, Siegel F, Bärfacker L (2017) BAY 1125976, a selective allosteric AKT1/2 inhibitor, exhibits high efficacy on AKT signaling-dependent tumor growth in mouse models. Int J Cancer 140(2):449–459. https://doi.org/10.1002/ijc.30457

    Article  CAS  PubMed  Google Scholar 

  14. Weisner J, Landel I, Reintjes C (2019) Preclinical efficacy of covalent-allosteric AKT inhibitor borussertib in combination with trametinib in KRAS-mutant pancreatic and colorectal cancer preclinical efficacy of AKT inhibitor borussertib. Cancer Res 79(9):2367–2378. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  15. Baron R, Baron R (2012) Computational drug discovery and design. Springer, New York. https://doi.org/10.3390/molecules25061375

    Book  Google Scholar 

  16. Anderson AC (2003) The process of structure-based drug design. Int J Mol Sci 10(9):787–797. https://doi.org/10.1016/j.chembiol.2003.09.002

    Article  CAS  Google Scholar 

  17. Singh N, Chaput L, Villoutreix BO (2021) Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Brief Bioinform 22(2):1790–1818. https://doi.org/10.1093/bib/bbaa034

    Article  PubMed  Google Scholar 

  18. Lin X (2020) A reviews on applications of computational methods in drug screening and design. Molecules 25(6):1375. https://doi.org/10.3390/molecules25061375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dsouza S, Prema K, Balaji S (2020) Machine learning models for drug–target interactions: current knowledge and future directions. Drug Discov Today 25(4):748–756. https://doi.org/10.1016/j.drudis.2020.03.003

    Article  CAS  PubMed  Google Scholar 

  20. Mei D, Yin Y, Wu F (2015) Discovery of potent and selective urea-based ROCK inhibitors: exploring the inhibitor’s potency and ROCK2/PKA selectivity by 3D-QSAR, molecular docking and molecular dynamics simulations. Biomedicines 23(10):2505–2517. https://doi.org/10.1016/j.bmc.2015.03.047

    Article  CAS  Google Scholar 

  21. Shaik NA, Hakeem KR, Banaganapalli B (2019) Essentials of bioinformatics, vol II. Springer, New York

    Book  Google Scholar 

  22. Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27(5):1208–1209

    Article  CAS  Google Scholar 

  23. Morris GM, Goodsell DS, Halliday RS (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  24. Ewing TJ, Makino S, Skillman AG (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428. https://doi.org/10.1023/a:1011115820450

    Article  CAS  PubMed  Google Scholar 

  25. Inc A (2010) Discovery studio 3.5 help. Accelrys Software Inc., San Diego

    Google Scholar 

  26. Trott O, Olson A (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaillard T (2018) Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark. J Chem Inf Model 58(8):1697–1706. https://doi.org/10.1021/acs.jcim.8b00312

    Article  CAS  PubMed  Google Scholar 

  28. Rao SN, Head MS, Kulkarni A (2007) Validation studies of the site-directed docking program LibDock. J Chem Inf Model 47(6):2159–2171. https://doi.org/10.1021/ci6004299

    Article  CAS  PubMed  Google Scholar 

  29. Wu G, Robertson DH, Brooks CL (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—a CHARMm-based MD docking algorithm. J Comput Chem 24(13):1549–1562. https://doi.org/10.1002/jcc.10306

    Article  CAS  PubMed  Google Scholar 

  30. Lippa B, Pan G, Corbett M (2008) Synthesis and structure based optimization of novel Akt inhibitors. Bioorg Med Chem Lett 18(11):3359–3363. https://doi.org/10.1016/j.bmcl.2008.04.034

    Article  CAS  PubMed  Google Scholar 

  31. Babu S, Nagarajan S, Sathish S, Negi V, Sohn H, Madhavan T (2022) Identification of potent and selective JAK1 lead compounds through ligand-based drug design approaches. Front Pharmacol. https://doi.org/10.3389/fphar.2022.837369

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967. https://doi.org/10.1002/chin.198851058

    Article  CAS  PubMed  Google Scholar 

  33. Liu Z, Du J, Fang J (2019) DeepScreening: a deep learning-based screening web server for accelerating drug discovery. Database. https://doi.org/10.1093/database/baz104

    Article  PubMed  PubMed Central  Google Scholar 

  34. **ong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1):W5–W14. https://doi.org/10.1093/nar/gkab255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bickerton GR, Paolini GV, Besnard J (2012) Quantifying the chemical beauty of drugs. Nat Chem 4(2):90–98. https://doi.org/10.1038/nchem.1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berendsen H, Hess B, Lindahl E (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  37. Tian C, Kasavajhala K, Belfon K (2019) Ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theory Comput 16(1):528–552. https://doi.org/10.1021/acs.jctc.9b00591

    Article  CAS  PubMed  Google Scholar 

  38. Mcgibbon R, Beauchamp K, Harrigan M (2015) MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J 109(8):1528–1532. https://doi.org/10.1016/j.bpj.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grant B, Skjærven L, Yao X (2021) The Bio3D packages for structural bioinformatics. Protein Sci 30(1):20–30. https://doi.org/10.1002/pro.3923

    Article  CAS  PubMed  Google Scholar 

  40. Kumari R, Kumar R, Consortium O (2014) A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  41. **e J, Meng D, Li Y (2022) Virtual screening for potential discoidin domain receptor 1 (DDR1) inhibitors based on structural assessment. Mol Divers. https://doi.org/10.1007/s11030-022-10557-8

    Article  PubMed  Google Scholar 

  42. Fratev F, Gutierrez DA, Aguilera RA, Sirimulla S (2021) Discovery of new AKT1 inhibitors by combination of in silico structure based virtual screening approaches and biological evaluations. J Biomol Struct Dyn 39(1):368–377. https://doi.org/10.26434/chemrxiv.7591202.v1

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Yin Y, Zhang Z (2017) Structural optimization elaborates novel potent Akt inhibitors with promising anticancer activity. Eur J Med Chem 29(138):543–551. https://doi.org/10.1016/j.ejmech.2017.06.067

    Article  CAS  Google Scholar 

  44. Dong X, Zhan W, Zhao M (2019) Discovery of 3,4,6-trisubstituted piperidine derivatives as orally active, low hERG blocking Akt inhibitors via conformational restriction and structure-based design. J Med Chem 62(15):7264–7288. https://doi.org/10.1021/acs.jmedchem.9b00891

    Article  CAS  PubMed  Google Scholar 

  45. Sadeghi F, Afkhami A, Madrakian T, Ghavami R (2021) Computational study on subfamilies of piperidine derivatives: QSAR modelling, model external verification, the inter-subset similarity determination, and structure-based drug designing. SAR QSAR Environ Res 32(6):433–462. https://doi.org/10.1080/1062936X.2021.1891568

    Article  CAS  PubMed  Google Scholar 

  46. Zeng Q, Bourbeau MP, Wohlhieter GE, Yao G (2010) 2-Aminothiadiazole inhibitors of AKT1 as potential cancer therapeutics. Bioorg Med Chem Lett 20(5):1652–1656. https://doi.org/10.1016/j.bmcl.2010.01.046

    Article  CAS  PubMed  Google Scholar 

  47. Rice KD, Kim MH, Bussenius J (2012) Pyrazolopyrimidines as dual Akt/p70S6K inhibitors. Bioorg Med Chem Lett 22(8):2693–2697. https://doi.org/10.1016/j.bmcl.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  48. **ao Y, Huck BR, Lan R (2021) Discovery of 4-aminopyrimidine analogs as highly potent dual P70S6K/Akt inhibitors. Bioorg Med Chem Lett 15(50):128352. https://doi.org/10.1016/j.bmcl.2021.128352

    Article  CAS  Google Scholar 

  49. Zhan W, Che J, Xu L (2019) Discovery of pyrazole-thiophene derivatives as highly potent, orally active Akt inhibitors. Eur J Med Chem 15(180):72–85. https://doi.org/10.1016/j.ejmech.2019.07.017

    Article  CAS  Google Scholar 

  50. Zhan W, Xu L, Dong X (2016) Design, synthesis and biological evaluation of pyrazol-furan carboxamide analogues as novel Akt kinase inhibitors. Eur J Med Chem 19(117):47–58. https://doi.org/10.1016/j.ejmech.2016.03.074

    Article  CAS  Google Scholar 

Download references

Funding

Open access funding provided by the National Natural Science Foundation of China (Grant No. 82260693) and Science and Technology Program Project of Gansu Province (20JR5RA538).

Author information

Authors and Affiliations

Authors

Contributions

WZ Investigation, Methodology, Writing-original draft; M-LH Investigation, Validation; X-YS Validation, Formal analysis; X-LC Validation, Data curation; XS and H-ZQ Methodology, Validation; YL Funding acquisition, Project administration; HZ Conceptualization, Writing – review & editing, Project administration, Investigation, Supervision.

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to participate

Consent to participate was obtained from all the authors.

Consent for publication

Consent for publication was obtained from all the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 235 KB)

Supplementary file2 (DOCX 998 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Hu, ML., Shi, XY. et al. Discovery of novel Akt1 inhibitors by an ensemble-based virtual screening method, molecular dynamics simulation, and in vitro biological activity testing. Mol Divers (2024). https://doi.org/10.1007/s11030-023-10788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10788-3

Keywords

Navigation