Log in

High-throughput virtual screening of potential inhibitors of GPR52 using docking and biased sampling method for Huntington’s disease therapy

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is a rare and progressive neurodegenerative disorder caused by polyglutamine (poly-Q) mutations of the huntingtin (HTT) gene resulting in chorea, cognitive, and psychiatric dysfunctions. Being a monogenic condition, reducing the levels of the mutated huntingtin protein (mHTT) holds promise as an effective therapeutic approach. GPR52, an orphan G-protein coupled receptor (GPCR), enriched in the striatum, is a novel target for slowing down the progression of HD by lowering the mHTT levels. Therefore, the study focuses on identifying potent small-molecule inhibitors for GPR52 using a combination of robust high-throughput virtual screening (HTVS) and pharmacokinetics profiling followed by fast pulling of ligand (FPL) and umbrella sampling (US) simulations. Initially, screening a library of 2,36,545 compounds was done against the binding pocket of GPR52. Based on binding affinity, stereochemical and non-bonded interactions, and pharmacokinetic profiling, 50 compounds were shortlisted. Selected hit compounds 1, 2, and 3 were subjected to FPL simulations with applied external bias potential to investigate their unique dissociation pathways and intermolecular interactions over time. Subsequently, the US simulations were performed on the selected hit compounds to estimate their binding free energy (ΔG). The analysis of the trajectories obtained from simulations revealed that the residues TYR34, TYR185, GLY187, ASP188, ILE189, SER299, PHE300, and THR303 within the active site of GPR52 were significant for efficient ligand binding through the formation of various hydrogen bond interactions and hydrophobic contacts. Out of the three hit compounds, compound 3 had the lowest ΔG of − 20.82 ± 0.44 kcal/mol. The study identified compounds 1, 2, and 3 as potential molecules that can be developed as GPR52 inhibitors holding promise for lowering mHTT levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated and/or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Reiner A, Dragatsis I, Dietrich P (2011) Genetics and neuropathology of Huntington’s disease. Int Rev Neurobiol 98:325–372. https://doi.org/10.1016/B978-0-12-381328-2.00014-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27(9):1083–1091. https://doi.org/10.1002/mds.25075

    Article  PubMed  Google Scholar 

  3. Jarosińska OD, Rüdiger SGD (2021) Molecular strategies to target protein aggregation in Huntington’s disease. Front Mol Biosci 8:769184. https://doi.org/10.3389/fmolb.2021.769184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andhale R, Shrivastava D (2022) Huntington’s disease: a clinical review. Cureus 14(8):e28484. https://doi.org/10.7759/cureus.28484

    Article  PubMed  PubMed Central  Google Scholar 

  5. McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34. https://doi.org/10.1111/ene.13413

    Article  CAS  PubMed  Google Scholar 

  6. Potkin KT, Potkin SG (2018) New directions in therapeutics for Huntington disease. Future Neurol 13(2):101–121. https://doi.org/10.2217/fnl-2017-0035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101(1):57–66. https://doi.org/10.1016/S0092-8674(00)80623-6

    Article  CAS  PubMed  Google Scholar 

  8. Wang N, Gray M, Lu XH et al (2014) Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med 20(5):536–541. https://doi.org/10.1038/nm.3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yao Y, Cui X, Al-Ramahi I et al (2015) A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity. Elife 4:e05449. https://doi.org/10.7554/eLife.05449

    Article  PubMed  PubMed Central  Google Scholar 

  10. Komatsu H (2021) Innovative therapeutic approaches for Huntington’s disease: from nucleic acids to GPCR-targeting small molecules. Front Cell Neurosci 15:785703. https://doi.org/10.3389/fncel.2021.785703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song H, Li H, Guo S et al (2018) Targeting Gpr52 lowers mutant HTT levels and rescues Huntington’s disease-associated phenotypes. Brain 141(6):1782–1798. https://doi.org/10.1093/brain/awy081

    Article  PubMed  PubMed Central  Google Scholar 

  12. Komatsu H, Maruyama M, Yao S et al (2014) Anatomical transcriptome of G protein-coupled receptors leads to the identification of a novel therapeutic candidate GPR52 for psychiatric disorders. PLoS ONE 9(2):e90134. https://doi.org/10.1371/journal.pone.0090134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu Z, Han Z, Tao L, Sun X, Su J, Hu J, Li C (2023) Dynamic insights into the self-activation pathway and allosteric regulation of the orphan G-protein-coupled receptor GPR52. J Chem Inf Model 63:5847–5862. https://doi.org/10.1021/acs.jcim.3c00672

    Article  CAS  PubMed  Google Scholar 

  14. Wang C, Zhang YF, Guo S, Zhao Q, Zeng Y, **e Z, **e X, Lu B, Hu Y (2021) GPR52 antagonist reduces huntingtin levels and ameliorates Huntington’s disease-related phenotypes. J Med Chem 64(2):941–957. https://doi.org/10.1021/acs.jmedchem.0c01133

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Liu S, Wang B, Liu F, Xu S, Li P, Chen Y (2023) An updated review on develo** small molecule kinase inhibitors using computer-aided drug design approaches. Int J Mol Sci 24:13953. https://doi.org/10.3390/ijms241813953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spiriti J, Wong CF (2021) Qualitative prediction of ligand dissociation kinetics from focal adhesion kinase using steered molecular dynamics. Life 11(2):74. https://doi.org/10.3390/life11020074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Åqvist J, Medina C, Samuelsson J-E (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Eng 7:385–439. https://doi.org/10.1093/protein/7.3.38518

    Article  PubMed  Google Scholar 

  18. Nguyen TH, Zhou H, Minh DDL (2018) Using the fast Fourier transform in binding free energy calculations. J Comput Chem 39:621–636. https://doi.org/10.1002/jcc.25139

    Article  CAS  PubMed  Google Scholar 

  19. Yung-Chi C, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108. https://doi.org/10.1016/0006-2952(73)90196-2

    Article  Google Scholar 

  20. Siebenmorgen T, Zacharias M (2019) Evaluation of predicted protein-protein complexes by binding free energy simulations. J Chem Theory Comput 15:2071–2086. https://doi.org/10.1021/acs.jctc.8b01022

    Article  CAS  PubMed  Google Scholar 

  21. Tanwar G, Mazumder AG, Bhardwaj V, Kumari S, Bharti R, Yamini SD, Das P, Purohit R (2019) Target identification, screening and in vivo evaluation of pyrrolone-fused benzosuberene compounds against human epilepsy using Zebrafish model of pentylenetetrazol-induced seizures. Sci Rep 9(1):7904. https://doi.org/10.1038/s41598-019-44264-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar Bhardwaj V, Purohit R, Kumar S (2021) Himalayan bioactive molecules as potential entry inhibitors for the human immunodeficiency virus. Food Chem 347:128932. https://doi.org/10.1016/j.foodchem.2020.128932

    Article  CAS  PubMed  Google Scholar 

  23. Hansson T, Marelius J, Åqvist J (1998) Ligand binding affinity prediction by linear interaction energy methods. J Comput Aided Mol Des 12:27–35. https://doi.org/10.1023/A:1007930623000

    Article  CAS  PubMed  Google Scholar 

  24. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T (2016) Assessing the performance of the MM/PBSA and MM/GBSA methods—6: capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. Phys Chem Chem Phys 18:22129–22139. https://doi.org/10.1039/c6cp03670h

    Article  CAS  PubMed  Google Scholar 

  25. Peter K (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev 93:2395–2417. https://doi.org/10.1021/cr00023a004

    Article  Google Scholar 

  26. Pham MQ, Vu KB, Han Pham TN, Thuy Huong LT, Tran LH, Tung NT, Vu VV, Nguyen TH, Ngo ST (2020) Rapid prediction of possible inhibitors for SARS-CoV-2 main protease using docking and FPL simulations. RSC Adv 10(53):31991–31996. https://doi.org/10.1039/d0ra06212j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. You W, Tang Z, Chang CA (2019) Potential mean force from umbrella sampling simulations: what can we learn and what is missed? J Chem Theory Comput 15:2433–2443. https://doi.org/10.1021/acs.jctc.8b01142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199. https://doi.org/10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  29. Dhiman A, Purohit R (2023) Identification of potential mutational hotspots in serratiopeptidase to address its poor pH tolerance issue. J Biomol Struct Dyn 41:8831–8843. https://doi.org/10.1080/07391102.2022.2137699

    Article  CAS  PubMed  Google Scholar 

  30. Singh R, Bhardwaj V, Purohit R (2021) Identification of a novel binding mechanism of Quinoline based molecules with lactate dehydrogenase of Plasmodium falciparum. J Biomol Struct Dyn 39(1):348–356. https://doi.org/10.1080/07391102.2020.1711809

    Article  CAS  PubMed  Google Scholar 

  31. Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S (2017) Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol 1607:627–641. https://doi.org/10.1007/978-1-4939-7000-1_26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin X, Li M, Wang N et al (2020) Structural basis of ligand recognition and self-activation of orphan GPR52. Nature 579(7797):152–157. https://doi.org/10.1038/s41586-020-2019-0

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinf 9:40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  Google Scholar 

  34. Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363–W367. https://doi.org/10.1093/nar/gky473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. https://doi.org/10.1021/ci049714+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  37. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676. https://doi.org/10.1002/jcc.20090

    Article  CAS  PubMed  Google Scholar 

  38. Stroet M, Caron B, Visscher KM, Geerke DP, Malde AK, Mark AE (2018) Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane. J Chem Theory Comput 14(11):5834–5845. https://doi.org/10.1021/acs.jctc.8b00768

    Article  CAS  PubMed  Google Scholar 

  39. Morris GM, Ruth H, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 61(8):3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Afgan E, Nekrutenko A, Grüning BA et al (2022) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 50(W1):W345–W351. https://doi.org/10.1093/nar/gkac247

    Article  CAS  Google Scholar 

  42. Fuhrmann J, Rurainski A, Lenhof HP, Neumann D (2010) A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J Comput Chem 31(9):1911–1918. https://doi.org/10.1002/jcc.21478

    Article  CAS  PubMed  Google Scholar 

  43. **ong G, Wu Z, Yi J et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1):W5–W14. https://doi.org/10.1093/nar/gkab255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kästner J (2011) Umbrella sampling. Wiley Interdiscip Rev Comput Mol Sci 1(6):932–942. https://doi.org/10.1002/wcms.66

    Article  CAS  Google Scholar 

  45. Lemkul JA, Bevan DR (2010) Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. J Phys Chem B 114(4):1652–1660. https://doi.org/10.1021/jp9110794

    Article  CAS  PubMed  Google Scholar 

  46. Kari S, Murugesan A, Thiyagarajan R, Kidambi S, Razzokov J, Selvaraj C, Kandhavelu M, Marimuthu P (2023) Bias-force guided simulations combined with experimental validations towards GPR17 modulators identification. Biomed Pharmacother 160:114320. https://doi.org/10.1016/j.biopha.2023.114320

    Article  CAS  PubMed  Google Scholar 

  47. Kumar P, Bhardwaj VK, Purohit R (2023) Dispersion-corrected DFT calculations and umbrella sampling simulations to investigate stability of Chrysin-cyclodextrin inclusion complexes. Carbohydr Polym 319:121162. https://doi.org/10.1016/j.carbpol.2023.121162

    Article  CAS  PubMed  Google Scholar 

  48. Tam NM, Nguyen TH, Ngan VT, Tung NT, Ngo ST (2022) Unbinding ligands from SARS-CoV-2 Mpro via umbrella sampling simulations. R Soc Open Sci 9(1):211480. https://doi.org/10.1098/rsos.211480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferrenberg AM, Swendsen RH (1989) Optimized Monte Carlo data analysis. Phys Rev Lett 63(12):1195–1198. https://doi.org/10.1103/PhysRevLett.63.1195

    Article  CAS  PubMed  Google Scholar 

  50. Hub JS, de Groot BL, van der Spoel D (2010) g_wham—a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6(12):3713–3720. https://doi.org/10.1021/ct100494z

    Article  CAS  Google Scholar 

  51. Efron B (2007) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26. https://doi.org/10.1214/aos/1176344552

    Article  Google Scholar 

  52. Sejdiu BI, Tieleman DP (2020) Lipid-protein interactions are a unique property and defining feature of G protein-coupled receptors. Biophys J 118(8):1887–1900. https://doi.org/10.1016/j.bpj.2020.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bhardwaj VK, Purohit R (2023) A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations. Carbohydr Polym 310:120729. https://doi.org/10.1016/j.carbpol.2023.120729

    Article  CAS  PubMed  Google Scholar 

  54. Segall D (2012) Multi-parameter optimization: identifying high quality compounds with a balance of properties. Curr Pharm Des 18:1292–1310. https://doi.org/10.2174/138161212799436430

    Article  CAS  PubMed  Google Scholar 

  55. Singh R, Bhardwaj VK, Purohit R (2022) Computational targeting of allosteric site of MEK1 by quinoline-based molecules. Cell Biochem Funct 40(5):481–490. https://doi.org/10.1002/cbf.3709

    Article  CAS  PubMed  Google Scholar 

  56. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  57. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  58. Badrinarayan P, Narahari Sastry G (2011) Virtual high throughput screening in new lead identification. Comb Chem High Throughput Screen 14(10):840–860. https://doi.org/10.2174/138620711797537102

    Article  CAS  PubMed  Google Scholar 

  59. Shao J, Kuiper BP, Thunnissen A-MWH, Cool RH, Zhou L, Huang C, Dijkstra BW, Broos J (2022) The role of tryptophan in π interactions in proteins: an experimental approach. J Am Chem Soc 144(30):13815–13822. https://doi.org/10.1021/jacs.2c04986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wong CF (2018) Steered molecular dynamics simulations for uncovering the molecular mechanisms of drug dissociation and for drug screening: a test on the focal adhesion kinase. J Comput Chem 39(19):1307–1318. https://doi.org/10.1002/jcc.25201

    Article  CAS  PubMed  Google Scholar 

  61. Gaillard T (2018) Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark. J Chem Inf Model 58(8):1697–1706. https://doi.org/10.1021/acs.jcim.8b00312

    Article  CAS  PubMed  Google Scholar 

  62. Hata H, Phuoc Tran D, Marzouk Sobeh M, Kitao A (2021) Binding free energy of protein/ligand complexes calculated using dissociation Parallel Cascade Selection Molecular Dynamics and Markov state model. Biophys Physicobiol 18:305–316. https://doi.org/10.2142/biophysico.bppb-v18.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ngo ST, Vu KB, Bui LM, Vu VV (2019) Effective estimation of ligand-binding affinity using biased sampling method. ACS Omega 4(2):3887–3893. https://doi.org/10.1021/acsomega.8b03258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schaeffer L (2008) The role of functional groups in drug-receptor interactions. The practice of medicinal chemistry. Elsevier, pp 359–378

    Chapter  Google Scholar 

  65. Tabrizi SJ, Ghosh R, Leavitt BR (2019) Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron 102(4):899. https://doi.org/10.1016/j.neuron.2019.01.039

    Article  CAS  PubMed  Google Scholar 

  66. Jurcau A, Jurcau MC (2022) Therapeutic strategies in Huntington’s disease: from genetic defect to gene therapy. Biomedicines 10(8):1895. https://doi.org/10.3390/biomedicines10081895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vassena R, Heindryckx B, Peco R, Pennings G, Raya A, Sermon K, Veiga A (2016) Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reprod Update 22(4):411–419. https://doi.org/10.1093/humupd/dmw005

    Article  CAS  PubMed  Google Scholar 

  68. Komatsu H (2015) Novel therapeutic GPCRS for psychiatric disorders. Int J Mol Sci 16(6):14109–14121. https://doi.org/10.3390/ijms160614109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang Y, Todd N, Thathiah A (2017) The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention. Curr Opin Pharmacol 32:96–110. https://doi.org/10.1016/j.coph.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  70. Ma M, Guo S, Lin X et al (2020) Targeted proteomics combined with affinity mass spectrometry analysis reveals antagonist E7 acts as an intracellular covalent ligand of orphan receptor GPR52. ACS Chem Biol 15(12):3275–3284. https://doi.org/10.1021/acschembio.0c00867

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Divya Jhinjharia (Gautam Buddha University) and Dr. Sayantan Mondal (Boston University) for their helpful discussions and critical review.

Funding

The authors thank the Department of Science and Technology-FIST, Government of India for the infrastructure facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: SS, HG; Formal analysis and investigation: HG; Writing—original draft preparation: HG; Supervision and Writing—review and editing: SS.

Corresponding author

Correspondence to Shakti Sahi.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, H., Sahi, S. High-throughput virtual screening of potential inhibitors of GPR52 using docking and biased sampling method for Huntington’s disease therapy. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10763-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10763-y

Keywords

Navigation