Log in

Structure-based pharmacophore modeling and DFT studies of Indian Ocean-derived red algal compounds as PI3Kα inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Phosphoinositide kinases (PIKs) are a type of lipid kinase that acts as an upstream activator of oncogenic signaling. Presently accessible therapeutic compounds have downsides, such as toxicity and dubious efficacy, as well as lengthy treatment durations, which have bred resistance. Here we attempt to screen the Indian Ocean-derived red algal compounds to be used as a promising lead for PI3Kα inhibitor development. Experimental structure of the PI3K alpha Isoform-Specific Inhibitor alpelisib complex-based pharmacophore model was constructed and used as key to mark off the suitable lead compounds from the pool of marine-derived red algal compounds of Indian Ocean. Besides, the study encompasses pharmacophore scaffold screening as well as physicochemical and pharmacokinetic parameter assessment. We employed molecular docking and molecular dynamics simulation to assess the binding type and stability of 21 red algal derivatives. Twelve compounds demonstrated a sustained binding mode within the PI3Kα binding pocket with an optimal protein backbone root-mean-square deviation, also prompted hydrogen bonding throughout the simulations, and also implies that these MNPs have firmly mediated the interaction with prime hinge region residues in the PI3Kα ATP binding pocket. DFT studies revealed that proposed compounds had the greatest occupied molecular orbital electrophilicity index, basicity, and dipole moment, all of which attributed their stability as well as binding affinity at the PI3Kα active site. Our study's findings revealed that CMNPD31054, CMNPD4798, CMNPD27861, CMNPD4799, CMNPD27860, CMNPD9533, CMNPD3732, CMNPD4221, CMNPD31058, CMNPD31052, CMNPD29281, and CMNPD31055 can be used as lead compounds for PI3KΑ isoform inhibitors design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thorpe LM, Yuzugullu H, Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15(1):7–24. https://doi.org/10.1038/nrc3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu H, Zhang L, Zhang X, Cui Z (2017) PI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy. Onco Targets Ther 10:2865–2871. https://doi.org/10.2147/OTT.S95267

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT (2017) The PI3K Pathway in Human Disease. Cell 170(4):605–635. https://doi.org/10.1016/j.cell.2017.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. LoRusso PM (2016) Inhibition of the PI3K/AKT/mTOR Pathway in Solid Tumors. J Clin Oncol: Off J Am Soci Clin Oncol 34(31):3803–3815. https://doi.org/10.1200/JCO.2014.59.0018

    Article  Google Scholar 

  5. Millis SZ, Jardim DL, Albacker L, Ross JS, Miller VA, Ali SM, Kurzrock R (2019) Phosphatidylinositol 3-kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities. Cancer 125(7):1185–1199. https://doi.org/10.1002/cncr.31921

    Article  CAS  PubMed  Google Scholar 

  6. Venetis K, Sajjadi E, Haricharan S, Fusco N (2020) Mismatch repair testing in breast cancer: the path to tumor-specific immuno-oncology biomarkers. Trans Cancer Res 9(7):4060–4064. https://doi.org/10.21037/tcr-20-1852

    Article  CAS  Google Scholar 

  7. Markham A (2019) Alpelisib: first global approval. Drugs 79(11):1249–1253. https://doi.org/10.1007/s40265-019-01161-6

    Article  CAS  PubMed  Google Scholar 

  8. Dotolo S, Cervellera C, Russo M, Russo GL, Facchiano A (2021) Virtual screening of natural compounds as potential PI3K-AKT1 signaling pathway inhibitors and experimental validation. Molecules 26(2):492. https://doi.org/10.3390/molecules26020492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Furet P, Guagnano V, Fairhurst RA, Imbach-Weese P, Bruce I, Knapp M, Fritsch C, Blasco F, Blanz J, Aichholz R, Hamon J, Fabbro D, Caravatti G (2013) Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett 23(13):3741–3748. https://doi.org/10.1016/j.bmcl.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  10. Zhang G, Musgrave CB (2007) Comparison of DFT methods for molecular orbital eigenvalue calculations. J Phys Chem A 111(8):1554–1561. https://doi.org/10.1021/jp061633o

    Article  CAS  PubMed  Google Scholar 

  11. Sutter J, Li J, Maynard AJ, Goupil A, Luu T, Nadassy K (2011) New features that improve the pharmacophore tools from Accelrys. Curr comput-aided drug des 7(3):173–18. https://doi.org/10.2174/157340911796504305

    Article  CAS  PubMed  Google Scholar 

  12. Lyu C, Chen T, Qiang B, Liu N, Wang H, Zhang L, Liu Z (2021) CMNPD: a comprehensive marine natural products database towards facilitating drug discovery from the ocean. Nucleic Acids Res 49(D1):D509–D515. https://doi.org/10.1093/nar/gkaa763

    Article  CAS  PubMed  Google Scholar 

  13. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ng CH, Rullah K, Abas F et al (2018) Hits-to-lead optimization of the natural compound 2,4,6-trihydroxy-3-geranyl-acetophenone (thga) as a potent lox inhibitor synthesis structure-activity relationship (sar) study and computational assignment. Molecules. https://doi.org/10.3390/molecules23102509

    Article  PubMed  PubMed Central  Google Scholar 

  15. Accelrys, (TOPKAT) TOxicity Prediction by Komputer Assisted Technology V 3.1, Accelrys software Inc., San Diego, CA, US, 2019; software available at http://www.3dsbiovia.com/

  16. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput-Aided Mol Des 27(3):221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  17. Atalay Y, Avci D, Başoğlu A (2008) Linear and non-linear optical properties of some donor–acceptor oxadiazoles by ab initio Hartree-Fock calculations. Struct Chem 19:239–246

    Article  CAS  Google Scholar 

  18. Calais JL (1993) Density-functional theory of atoms and molecules. Int J Quantum Chem 47(1):101

    Article  Google Scholar 

  19. Pearson RG (1995) The HSAB Principle more quantitative aspects. Inorganica Chim Acta 240:93–98. https://doi.org/10.1016/0020-1693(95)04648-8

    Article  CAS  Google Scholar 

  20. Abraham CS, Prasana JC, Muthu S (2017) Quantum mechanical, spectroscopic and docking studies of 2-Amino-3-bromo-5-nitropyridine by Density Functional Method. Spectrochim. acta. Part A, Mol Biomol spectrosco 181:153–163. https://doi.org/10.1016/j.saa.2017.03.045

    Article  CAS  Google Scholar 

  21. Meier TI, Cook JA, Thomas JE, Radding JA, Horn C, Lingaraj T, Smith MC (2004) Cloning, expression, purification, and characterization of the human Class Ia phosphoinositide 3-kinase isoforms. Protein expr purif 35(2):218–224. https://doi.org/10.1016/j.pep.2003.12.010

    Article  CAS  PubMed  Google Scholar 

  22. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J comput chem 31(4):671–690. https://doi.org/10.1002/jcc.21367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J mol graph model 21(4):289–307. https://doi.org/10.1016/s1093-3263(02)00164-x

    Article  CAS  PubMed  Google Scholar 

  24. Christy J, Shankari S, Majeed I, Anand DA (2021) Deciphering the synergistic mechanism of cortistatin towards cancer targets using network pharmacology approach. Indian J Pharm Educ Res. https://doi.org/10.5530/ijper.55.4.202

    Article  Google Scholar 

  25. Christy J, Harini Vasudevan S, Lingesan P, Anand DA (2021) Deciphering the molecular interplay between pelvic inflammatory disease (PID) and ovarian cancer (OC)-A network biology approach. Gene Rep 25:101405. https://doi.org/10.1016/j.genrep.2021.101405

    Article  CAS  Google Scholar 

  26. Schüttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta crystallogr. Sec D Biol crystallograp 60(Pt 8):1355–1363. https://doi.org/10.1107/S0907444904011679

    Article  CAS  Google Scholar 

  27. Turner, P. J. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR, 2.

  28. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2021) Marine natural products. Nat Prod Rep 38(2):362–413. https://doi.org/10.1039/D0NP00089B

    Article  CAS  PubMed  Google Scholar 

  29. Faulkner DJ (1993) Marine natural products. Nat Prod Rep 10(5):497–539. https://doi.org/10.1039/np9931000497

    Article  CAS  PubMed  Google Scholar 

  30. Blunt JW, Copp BR, Keyzers RA, Munro M, Prinsep MR (2017) Marine natural products. Nat Prod Rep 34(3):235–294. https://doi.org/10.1039/c6np00124f

    Article  CAS  PubMed  Google Scholar 

  31. Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, Chen S, Yuan J (2015) Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs 13(1):202–221. https://doi.org/10.3390/md13010202

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cifuentes Kottkamp A, De Jesus E, Grande R, Brown JA, Jacobs AR, Lim JK, Stapleford KA (2019) Atovaquone Inhibits Arbovirus Replication through the Depletion of Intracellular Nucleotides. J virol 93(11):e00389-e419. https://doi.org/10.1128/JVI.00389-19

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim T, Song B, Cho KS, Lee IS (2020) Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int J Mol Sci 21(6):2187. https://doi.org/10.3390/ijms21062187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Archana Vasuki K, Jemmy Christy H, Chandramohan V, Anand DA (2021) Study of mangal based naphthoquinone derivatives anticancer potential towards chemo-resistance related Never in mitosis gene A-related kinase 2-Insilico approach. Mol Simul 47(13):1078–1092. https://doi.org/10.1080/08927022.2021.1948545

    Article  CAS  Google Scholar 

  35. Watase C, Shiino S, Shimoi T, Noguchi E, Kaneda T, Yamamoto Y, Yonemori K, Takayama S, Suto A (2021) Breast cancer brain metastasis—overview of disease state, treatment options and future perspectives. Cancers 13(5):1078. https://doi.org/10.3390/cancers13051078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chow HH, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS (2010) Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prevent Res (Philadelphia, Pa) 3(9):1168–1175. https://doi.org/10.1158/1940-6207.CAPR-09-0155

    Article  CAS  Google Scholar 

  37. Singh S, Gupta AK, Verma A (2013) Molecular properties, and bioactivity score of the Aloe vera antioxidant compounds-in order to lead finding. Res J Pharm Biol Chem Sci 4:876–881

    Google Scholar 

  38. Li H, Sutter J, Hoffmann R D (2000) Pharmacophore perception, development, and use in drug design, IUL Biotechnology Series.In: Güner OF. La Jolla (eds). CA: International University Line; HypoGen: An automated system for generating 3D predictive pharmacophore models Doi: https://doi.org/10.3390/50700987

  39. Zheng Z, Amran SI, Zhu J, Schmidt-Kittler O, Kinzler KW, Vogelstein B, Shepherd PR, Thompson PE, Jennings IG (2012) Definition of the binding mode of a new class of phosphoinositide 3-kinase α-selective inhibitors using in vitro mutagenesis of non-conserved amino acids and kinetic analysis. Biochem j 444(3):529–535. https://doi.org/10.1042/BJ20120499

    Article  CAS  PubMed  Google Scholar 

  40. Makkar F, Chakraborty K (2018) Novel furanyl derivatives from the red seaweed Gracilaria opuntia with pharmacological activities using different in vitro models. Med Chem Res 27:1245–1259. https://doi.org/10.1007/s00044-018-2144-6

    Article  CAS  Google Scholar 

  41. Vasanthi HR, Rajamanickam GV, Saraswathy A, Jaswanth AJSRU (2004) Tumoricidal effect of the red algae Acanthophora spicifera on Ehrlich’s ascites carcinoma in mice. Seaweed Res Util 25:217–224

    Google Scholar 

  42. Sithranga Boopathy N, Kathiresan K (2010) Anticancer drugs from marine flora: an overview. J oncol. https://doi.org/10.1155/2010/214186

    Article  PubMed  Google Scholar 

  43. Kannu KD, Rani KS, Jothi RA, Gowsalya GU, Ramakritinan C (2014) In-vivo anticancer activity of red algae (Gelidiela acerosa and Acanthophora spicifera). Int J Pharmaceut Sci Res. https://doi.org/10.13040/IJPSR.0975-8232.5(8).3347-52

    Article  Google Scholar 

  44. Yang Y, Zhang LH, Yang BX, Tian JK, Zhang L (2015) Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux. J cell mol med 19(5):1055–1064. https://doi.org/10.1111/jcmm.12498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou D, Wei H, Jiang Z, Li X, Jiao K, Jia X, Hou Y, Li N (2017) Natural potential neuroinflammatory inhibitors from Alhagi sparsifolia Shap. Bioorg med chem lett 27(4):973–978. https://doi.org/10.1016/j.bmcl.2016.12.075

    Article  CAS  PubMed  Google Scholar 

  46. Anand J, Sathuvan M, Babu GV, Sakthivel M, Palani P, Nagaraj S (2018) Bioactive potential and composition analysis of sulfated polysaccharide from Acanthophora spicifera (Vahl) Borgeson. Int j biol macromol 111:1238–1244. https://doi.org/10.1016/j.ijbiomac.2018.01.057

    Article  CAS  PubMed  Google Scholar 

  47. Zbakh H, Zubía E, Reyes CL, Calderón-Montaño JM, Motilva V (2020) Anticancer activities of meroterpenoids isolated from the brown alga Cystoseira usneoides against the human colon cancer cells HT-29. Foods (Basel, Switzerland) 9(3):300. https://doi.org/10.3390/foods9030300

    Article  CAS  PubMed  Google Scholar 

  48. Chakraborty K, Joseph D, Joy M, Raola VK (2016) Characterization of substituted aryl meroterpenoids from red seaweed Hypnea musciformis as potential antioxidants. Food Chem 212:778–788. https://doi.org/10.1016/j.foodchem.2016.06.039

    Article  CAS  PubMed  Google Scholar 

  49. Han L, Shi D, Xu F, Yuan Z, Sun J, Shi J (2009) Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China. J Chinese Mater Medi 34(1):60–63

    CAS  Google Scholar 

  50. Makkar F, Chakraborty K (2017) Unprecedented antioxidative cyclic ether from the red seaweed Kappaphycus alvarezii with anti-cyclooxygenase and lipoxidase activities. Nat Prod Res 31(10):1131–1141. https://doi.org/10.1080/14786419.2016.1230113

    Article  CAS  PubMed  Google Scholar 

  51. Chang VS, Okechukwu PN, Teo SS (2017) The properties of red seaweed (Kappaphycus alvarezii) and its effect on mammary carcinogenesis. Biomed. pharmacother. = Biomed. Pharmacother 87:296–301. https://doi.org/10.1016/j.biopha.2016.12.092

    Article  Google Scholar 

  52. McCarthy AM, Kumar NP, He W et al (2020) Different associations of tumor PI3KΑ mutations and clinical outcomes according to aspirin use among women with metastatic hormone receptor positive breast cancer. BMC Cancer 20:347. https://doi.org/10.1186/s12885-020-06810-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang H, Medeiros PF, Raha K, Elkins P, Lind KE, Lehr R, Adams ND, Burgess JL, Schmidt SJ, Knight SD, Auger KR, Schaber MD, Franklin GJ, Ding Y, DeLorey JL, Centrella PA, Mataruse S, Skinner SR, Clark MA, Cuozzo JW, Evindar G (2015) Discovery of a potent class of PI3Kα inhibitors with unique binding mode via encoded library technology (ELT). ACS Med Chem Lett 6(5):531–536. https://doi.org/10.1021/acsmedchemlett.5b00025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crabbe T, Welham MJ, Ward SG (2007) The PI3K inhibitor arsenal: choose your weapon! Trends biochem sci 32(10):450–456. https://doi.org/10.1016/j.tibs.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  55. Baggiolini M, Dewald B, Schnyder J, Ruch W, Cooper PH, Payne TG (1987) Inhibition of the phagocytosis-induced respiratory burst by the red algae derived metabolite wortmannin and some analogues. Exp cell res 169(2):408–418. https://doi.org/10.1016/0014-4827(87)90201-1

    Article  CAS  PubMed  Google Scholar 

  56. Craveur P, Joseph AP, Esque J, Narwani TJ, Noël F, Shinada N et al (2015) Protein flexibility in the light of structural alphabets. Front Mol Biosci. https://doi.org/10.3389/fmolb.2015.00020

    Article  PubMed  PubMed Central  Google Scholar 

  57. Khan FI, Wei DQ, Gu KR, Hassan MI, Tabrez S (2016) Current updates on computer aided protein modeling and designing. Int J Biol Macromol 85:48–62. https://doi.org/10.1016/j.ijbiomac.2015.12.072

    Article  CAS  PubMed  Google Scholar 

  58. Abu-Melha S (2018) Design, synthesis and DFT/DNP modeling study of new 2-Amino-5-arylazothiazole derivatives as potential antibacterial agents. Molecules (Basel, Switzerland) 23(2):434. https://doi.org/10.3390/molecules23020434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the technical team of The Department of Bioinformatics, Sathyabama Institute of Science and Technology for their computational facilities

Author information

Authors and Affiliations

Authors

Contributions

JCH conceptualized the research topic and supervised its implementation; AV and RD designed the method, analyzed the data, and prepared figures/tables; JCH and MD wrote the manuscript; JCH and RD revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to H. Jemmy christy.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

Not applicable.

Research involving in human and animal rights

Present study does not involve humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8356 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

vasuki, A., christy, H.J., Renugadevi, K. et al. Structure-based pharmacophore modeling and DFT studies of Indian Ocean-derived red algal compounds as PI3Kα inhibitors. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10695-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10695-7

Keywords

Navigation