Log in

N-substituted tetrahydro-beta-carboline as mu-opioid receptors ligands: in silico study; molecular docking, ADMET and molecular dynamics approach

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Manipulating intracellular signals by interaction with transmembranal G-protein-coupled receptors (GPCRs) is the way of action of more than 30% of available medicines. Designing molecules against GPCRs is most challenging due to their flexible binding orthosteric and allosteric pockets, a property that lead to different mode and extent of activation of intracellular mediators. Here, in the current study we aimed to design N-substituted tetrahydro-beta-carbolines (THβC’s) targeting Mu Opioid Receptors (MORs). We performed ligand docking study for reference and designed compounds against active and inactive states of MOR, as well as the active state bound to intracellular mediator of Gi. The reference compounds include 40 known agonists and antagonists, while the designed compounds include 25,227 N-substituted THβC analogues. Out of the designed compounds, 15 compounds were comparatively having better extra precision (XP) Gscore and were analyzed for absorption, distribution, metabolism, and excretion-toxicity (ADMET) properties, drug-likness, and molecular dynamic (MD) simulation. The results showed that N-substituted tetrahydro-beta-carbolines with and without C6-methoxy group substitutions (THBC/6MTHBC) analogues of A1/B1 and A9/B9 have relatively acceptable affinity and within pocket-stability toward MOR compared to the reference compounds of morphine (agonist) and naloxone (antagonist). Moreover, the designed analogues interact with key residue within the binding pocket of Asp 147 that is reported to be involved in receptor activation. In conclusion, the designed THBC analogues represent a good starting point for designing opioid receptor ligands other than morphinan scaffold, that have good synthetic accessibility which promotes feasible structural manipulation to tailor pharmacological effects with minimal side effects.

Graphical abstract

Workflow rational in the discovery of potential Mu Opioid Receptor ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mahmod Al-Qattan MN, Mordi MN (2019) Molecular basis of modulating adenosine receptors activities. Curr Pharm Des. https://doi.org/10.2174/1381612825666190304122624

    Article  PubMed  Google Scholar 

  2. Galligan JJSC (2016) Insights into the role of opioid receptors in the GI tract: experimental evidence and therapeutic relevance. Handb Exp Pharmacol 239:363–378. https://doi.org/10.1007/164_2016_116

    Article  CAS  Google Scholar 

  3. Kaserer T, Steinacher T, Kainhofer R et al (2020) Identification and characterization of plant-derived alkaloids, corydine and corydaline, as novel mu opioid receptor agonists. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-70493-1

    Article  CAS  Google Scholar 

  4. Law PY, Reggio PH, Loh HH (2013) Opioid receptors: toward separation of analgesic from undesirable effects. Trends Biochem Sci 38:275–282. https://doi.org/10.1016/j.tibs.2013.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang W, Manglik A, Venkatakrishnan AJ et al (2015) Structural insights into μ-opioid receptor activation. Nature 524:315–321. https://doi.org/10.1038/nature14886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Manglik A, Kruse AC, Kobilka TS et al (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature. https://doi.org/10.1038/nature10954

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koehl A, Hu H, Maeda S et al (2018) Structure of the μ-opioid receptor-Gi protein complex. Nature. https://doi.org/10.1038/s41586-018-0219-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mafi A, Kim S, Goddard WA (2020) Mechanism of β-arrestin recruitment by the μ-opioid G protein-coupled receptor. Proc Natl Acad Sci USA 117:16346–16355. https://doi.org/10.1073/pnas.1918264117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trescot AM, Datta S, Lee M, Hans H (2008) Opioid pharmacology. Pain Physician 11:133–154. https://doi.org/10.1097/ajp.0000000000000710

    Article  Google Scholar 

  10. Sum CS, Murphy BJ, Li Z et al (2019) Pharmacological characterization of GPCR agonists, antagonists, allosteric modulators and biased ligands from HTS hits to lead optimization. In: Markossian S, Sittampalam G, Grossman A (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bristol-Myers Squibb Company, NJ, pp 1–27

  11. Wu Z, Hruby VJ (2019) Toward a universal μ-agonist template for template-based alignment modeling of opioid ligands. ACS Omega 4:17457–17476. https://doi.org/10.1021/acsomega.9b02244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Váradi A, Marrone GF, Palmer TC et al (2016) Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with mu agonism and delta antagonism, which do not recruit β-arrestin-2. J Med Chem 59:8381–8397. https://doi.org/10.1021/acs.jmedchem.6b00748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Gong F, Liang T et al (2021) A review of synthetic bioactive tetrahydro-β-carbolines: a medicinal chemistry perspective. Eur J Med Chem 225:113815. https://doi.org/10.1016/j.ejmech.2021.113815

    Article  CAS  PubMed  Google Scholar 

  14. Kruegel AC, Gassaway MM, Kapoor A et al (2016) Synthetic and receptor signaling explorations of the mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J Am Chem Soc 138:6754–6764. https://doi.org/10.1021/jacs.6b00360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chakraborty S, Uprety R, Daibani AE et al (2021) Kratom alkaloids as probes for opioid receptor function: pharmacological characterization of minor indole and oxindole alkaloids from Kratom. ACS Chem Neurosci 12:2661–2678. https://doi.org/10.1021/acschemneuro.1c00149

    Article  CAS  PubMed  Google Scholar 

  16. Maity P, Adhikari D, Jana AK (2019) An overview on synthetic entries to tetrahydro-β-carbolines. Tetrahedron 75:965–1028. https://doi.org/10.1016/j.tet.2019.01.004

    Article  CAS  Google Scholar 

  17. Jiang XL, Shen HW, Yu AM (2009) Pinoline may be used as a probe for CYP2D6 activity. Drug Metab Dispos 37:443–446. https://doi.org/10.1124/dmd.108.025056

    Article  CAS  PubMed  Google Scholar 

  18. Mohamad Arshad AS, Chear NJY, Ezzat MO et al (2020) Synthesis, characterization and crystal structure of new tetrahydro-β-carboline as acetylcholinesterase inhibitor. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127070

    Article  Google Scholar 

  19. Kalso E, Edwards JE, Moore RA, McQuay HJ (2004) Opioids in chronic non-cancer pain: systematic review of efficacy and safety. Pain 112:372–380. https://doi.org/10.1016/j.pain.2004.09.019

    Article  CAS  PubMed  Google Scholar 

  20. Morris GML-WM (2006) Molecular docking. In: Kukol AK (ed) Methods in molecular biology. Molecular modeling of proteins, vol 443. Human Press, Totowa, pp 365–382

    Chapter  Google Scholar 

  21. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank (www.rcsb.org). Nucleic Acids Res. https://doi.org/10.1093/nar/28.1.235

  22. Banks JL, Beard HS, Cao Y et al (2005) Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem 26:1752–1780. https://doi.org/10.1002/jcc.20292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ellis CR, Kruhlak NL, Kim MT et al (2018) Predicting opioid receptor binding affinity of pharmacologically unclassified designer substances using molecular docking. PLoS ONE 13:1–18. https://doi.org/10.1371/journal.pone.0197734

    Article  CAS  Google Scholar 

  24. Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.5b00559

    Article  PubMed  PubMed Central  Google Scholar 

  25. Molecular Operating Environment (MOE), 2019.0102 Chemical Computing Group ULC. Montreal

  26. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  27. Ding Y, Fang Y, Moreno J et al (2016) Assessing the similarity of ligand binding conformations with the Contact Mode Score. Comput Biol Chem 64:403–413. https://doi.org/10.1016/j.compbiolchem.2016.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Daina A, Michielin O, Zoete V (2014) iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model 25:3284–3301. https://doi.org/10.1021/ci500467k

    Article  CAS  Google Scholar 

  29. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  30. **ong G, Wu Z, Yi J et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49:W5–W14. https://doi.org/10.1093/nar/gkab255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263. https://doi.org/10.1093/nar/gky318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bowers KJ, Chow E, Xu H et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC ’06: proceedings of the 2006 ACM/IEEE conference on supercomputing. IEEE, Tampa, pp 43–43

  33. Lyman E, Higgs C, Kim B et al (2009) A role for a specific cholesterol interaction in stabilizing the Apo configuration of the human A2A adenosine receptor. Structure 17:1660–1668. https://doi.org/10.1016/j.str.2009.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960. https://doi.org/10.1021/jp003020w

    Article  CAS  Google Scholar 

  35. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hauser AS, Kooistra AJ, Munk C et al (2021) GPCR activation mechanisms across classes and macro/microscales. Nat Struct Mol Biol 28:879–888. https://doi.org/10.1038/s41594-021-00674-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zou Y, Ewalt J, Ng HL (2019) Recent insights from molecular dynamics simulations for G protein-coupled receptor drug discovery. Int J Mol Sci. https://doi.org/10.3390/ijms20174237

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shahraki A, Işbilir A, Dogan B et al (2021) Structural and functional characterization of allatostatin receptor type-C of Thaumetopoea pityocampa, a potential target for next-generation pest control agents. J Chem Inf Model 61:715–728. https://doi.org/10.1021/acs.jcim.0c00985

    Article  CAS  PubMed  Google Scholar 

  39. Zhao Z, Huang T, Li J (2020) Molecular dynamics simulations to investigate how PZM21 affects the conformational state of the μ-opioid receptor upon activation. Int J Mol Sci 21:1–17. https://doi.org/10.3390/ijms21134699

    Article  CAS  Google Scholar 

  40. Coimbra JRM, Baptista SJ, Dinis TCP et al (2020) Combining virtual screening protocol and in vitro evaluation towards the discovery of BACE1 inhibitors. Biomolecules. https://doi.org/10.3390/biom10040535

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lopez-Vallejo F, Caulfield T, Martinez-Mayorga K et al (2011) Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb Chem High Throughput Screen 14:475–487. https://doi.org/10.2174/138620711795767866

    Article  CAS  PubMed  Google Scholar 

  42. Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Rev 54:355–366. https://doi.org/10.1016/S0169-409X(02)00008-X

    Article  CAS  Google Scholar 

  43. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68. https://doi.org/10.1021/cc9800071

    Article  CAS  PubMed  Google Scholar 

  44. Sanchez-Covarrubias L, Slosky LM, Thompson BJ et al (2014) P-glycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac. PLoS ONE 9:1–11. https://doi.org/10.1371/journal.pone.0088516

    Article  CAS  Google Scholar 

  45. Mahar Doan KM, Humphreys JE, Webster LO et al (2002) Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 303:1029–1037. https://doi.org/10.1124/jpet.102.039255

    Article  CAS  PubMed  Google Scholar 

  46. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. https://doi.org/10.1016/S1056-8719(00)00107-6

    Article  PubMed  Google Scholar 

  47. Gudin J (2012) Opioid therapies and cytochrome P450 interactions. J Pain Symptom Manag 44:S4–S14. https://doi.org/10.1016/j.jpainsymman.2012.08.013

    Article  Google Scholar 

  48. Overholser BR, Foster DR (2011) Opioid pharmacokinetic drug–drug interactions. Am J Manag Care 17:276–287

    Google Scholar 

  49. AlRabiah H, Ahad A, Mostafa GAE, Al-Jenoobi FI (2018) Effect of naltrexone hydrochloride on cytochrome P450 1A2, 2C9, 2D6, and 3A4 activity in human liver microsomes. Eur J Drug Metab Pharmacokinet 43:707–713. https://doi.org/10.1007/s13318-018-0482-x

    Article  CAS  PubMed  Google Scholar 

  50. Holmquist GL (2009) Opioid metabolism and effects of cytochrome P450. Pain Med 10:20–29. https://doi.org/10.1111/j.1526-4637.2009.00596.x

    Article  Google Scholar 

  51. Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 6:147–172. https://doi.org/10.1002/wcms.1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang M, Park E-J, Kondratyuk TP et al (2018) Synthesis and structure-activity relationships of tetrahydro-β-carboline derivatives as anticancer and cancer-chemopreventive agents. Anticancer Res 38:4425–4433. https://doi.org/10.21873/anticanres.12744

    Article  CAS  PubMed  Google Scholar 

  53. Nie C, Li Q, Qiao Y et al (2020) Study on chemical modification and analgesic activity of N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl) piperazine-1-carboxamide. Eur J Med Chem 194:112236. https://doi.org/10.1016/j.ejmech.2020.112236

    Article  CAS  PubMed  Google Scholar 

  54. Jaromin A, Gryzło B, Jamrozik M et al (2021) Synthesis, molecular docking and antiplasmodial activities of new tetrahydro-β-carbolines. Int J Mol Sci. https://doi.org/10.3390/ijms222413569Academic

    Article  PubMed  PubMed Central  Google Scholar 

  55. Santos LHS, Ferreira RS, Caffarena ER (2019) Integrating molecular docking and molecular dynamics simulations. In: Methods in molecular biology. Humana, New York, pp 13–34

    Google Scholar 

  56. Podlewska S, Bugno R, Kudla L et al (2020) Molecular modeling of µ opioid receptor ligands patterns confronted with experimental data. Mol Pharmacol. https://doi.org/10.3390/molecules25204636

    Article  Google Scholar 

  57. Ricarte A, Dalton JAR, Giraldo J (2021) Structural assessment of agonist efficacy in the μ-opioid receptor: morphine and fentanyl elicit different activation patterns. J Chem Inf Model 61:1251–1274. https://doi.org/10.1021/acs.jcim.0c00890

    Article  CAS  PubMed  Google Scholar 

  58. Liao S, Tan K, Floyd C et al (2021) Probing biased activation of mu-opioid receptor by the biased agonist PZM21 using all atom molecular dynamics simulation. Life Sci 269:119026. https://doi.org/10.1016/j.lfs.2021.119026

    Article  CAS  PubMed  Google Scholar 

  59. Ronsisvalle S, Panarello F, Spadaro A et al (2020) Pharmacological properties and biochemical mechanisms of μ-opioid receptor ligands might be due to different binding poses: MD studies. Future Med Chem 12:2001–2018. https://doi.org/10.4155/fmc-2020-0249

    Article  CAS  PubMed  Google Scholar 

  60. Li J, Chen C, Yin J et al (1999) ASP147 in the third transmembrane helix of the rat mu opioid receptor forms ion-pairing with morphine and naltrexone. Life Sci 65:175–185. https://doi.org/10.1016/s0024-3205(99)00234-9

    Article  CAS  PubMed  Google Scholar 

  61. Marmolejo-Valencia AF, Madariaga-Mazón A, Martinez-Mayorga K (2021) Bias-inducing allosteric binding site in mu-opioid receptor signaling. SN Appl Sci 3:1–16. https://doi.org/10.1007/s42452-021-04505-8

    Article  CAS  Google Scholar 

  62. Manglik A (2020) Molecular basis of opioid action: from structures to new leads. Biol Psychiatry 87:6–14. https://doi.org/10.1016/j.biopsych.2019.08.028

    Article  CAS  PubMed  Google Scholar 

  63. Wang H, Hetzer F, Huang W et al (2022) Structure-based evolution of G protein-biased μ-opioid receptor agonists. Angew Chem Int Ed. https://doi.org/10.1002/anie.202200269

    Article  Google Scholar 

  64. Kongsted J, Ryde U (2009) An improved method to predict the entropy term with the MM/PBSA approach. J Comput Aided Mol Des 23:63–71. https://doi.org/10.1007/s10822-008-9238-z

    Article  CAS  PubMed  Google Scholar 

  65. Porter SJ, Somogyi AA, White JM (2002) In vivo and in vitro potency studies of 6β-naltrexol, the major human metabolite of naltrexone. Addict Biol 7:219–225. https://doi.org/10.1080/135562102200120442

    Article  CAS  PubMed  Google Scholar 

  66. Mannelli P, Peindl KS, Wu L-T (2011) Pharmacological enhancement of naltrexone treatment for opioid dependence: a review. Subst Abuse Rehabil. https://doi.org/10.2147/SAR.S15853

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 32:866–877. https://doi.org/10.1002/jcc.21666

    Article  CAS  PubMed  Google Scholar 

  68. Tuccinardi T (2021) What is the current value of MM/PBSA and MM/GBSA methods in drug discovery? Expert Opin Drug Discov 16:1233–1237. https://doi.org/10.1080/17460441.2021.1942836

    Article  CAS  PubMed  Google Scholar 

  69. Zhang X, Perez-sanchez H, Lightstone FC (2017) A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr Top Med Chem. https://doi.org/10.2174/1568026616666161117112604

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Schrodinger Licensing support team (licensing@schrodinger.com) for providing the thermal_mmgbsa.py and MOLSIS Inc. (www.molsis.co.jp) for providing Molecular Operating Environment (MOE, 2019.0102) software of 1-month free trail subscriptions.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript

Corresponding author

Correspondence to Waleed A. Alananzeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This is a purely computational study and ethics approvals are not applicable.

Consent for publication

All co-authors have read and approved the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2671 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alananzeh, W.A., Al-qattan, M.N., Ayipo, Y.O. et al. N-substituted tetrahydro-beta-carboline as mu-opioid receptors ligands: in silico study; molecular docking, ADMET and molecular dynamics approach. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10655-1

Keywords

Navigation