Log in

Anti-tubercular activity evaluation of natural compounds by targeting Mycobacterium tuberculosis resuscitation promoting factor B inhibition: An in silico study

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Tuberculosis (TB), an infectious disease caused by the Mycobacterium tuberculosis (Mtb), has been responsible for the deaths of millions of individuals around the globe. A vital protein in viral pathogenesis known as resuscitation promoting factor (RpfB) has been identified as a potential therapeutic target of anti-tuberculosis drugs. This study offered an in silico process to examine possible RpfB inhibitors employing a computational drug design pipeline. In this study, a total of 1228 phytomolecules were virtually tested against the RpfB of Mtb. These phytomolecules were sourced from the NP-lib database of the MTi-OpenScreen server, and five top hits (ZINC000044404209, ZINC000059779788, ZINC000001562130, ZINC000014766825, and ZINC000043552589) were prioritized for compute intensive docking with dock score ≤ − 8.5 kcal/mole. Later, molecular dynamics (MD) simulation and principal component analysis (PCA) were used to validate these top five hits. In the list of these top five hits, the ligands ZINC000044404209, ZINC000059779788, and ZINC000043552589 showed hydrogen bond formation with the functional residue Glu292 of the RpfB protein suggesting biological significance of the binding. The RMSD study showed stable protein–ligand complexes and higher conformational consistency for the ligands ZINC000014766825, and ZINC000043552589 with RMSD 3–4 Å during 100 ns MD simulation. The overall analysis performed in the study suggested promising binding of these compounds with the RpfB protein of the Mtb at its functional site, further experimental investigation is needed to validate the computational finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. World Health Organization (2021) Global tuberculosis report 2021. World Health Organization, Geneva

    Google Scholar 

  2. (2020) Indonesia Tuberculosis Roadmap Overview, Fiscal Year 2021. https://www.usaid.gov/global-health/health-areas/tuberculosis/resources/news-and-updates/global-accelerator-end-tb/tb-roadmaps/indonesia. Accessed 28 Nov 2022

  3. (2018) Tuberculosis (TB)—Treatment. In: nhs.uk. https://www.nhs.uk/conditions/tuberculosis-tb/treatment/. Accessed 30 Nov 2022

  4. Bajrai LH, Khateb AM, Alawi MM et al (2022) Glycosylated flavonoid compounds as potent CYP121 inhibitors of Mycobacterium tuberculosis. Biomolecules 12:1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh K, Pandey N, Ahmad F et al (2022) Identification of novel inhibitor of Enoyl-acyl Carrier protein reductase (InhA) enzyme in Mycobacterium tuberculosis from plant-derived metabolites: an in silico study. Antibiotics 11:1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kell DB, Young M (2000) Bacterial dormancy and culturability: the role of autocrine growth factors. Curr Opin Microbiol 3:238–243. https://doi.org/10.1016/s1369-5274(00)00082-5

    Article  CAS  PubMed  Google Scholar 

  7. Squeglia F, Marchetti R, Ruggiero A et al (2011) Chemical basis of peptidoglycan discrimination by PrkC, a key kinase involved in bacterial resuscitation from dormancy. J Am Chem Soc 133:20676–20679. https://doi.org/10.1021/ja208080r

    Article  CAS  PubMed  Google Scholar 

  8. Ruggiero A, Marasco D, Squeglia F et al (2010) Structure and functional regulation of RipA, a mycobacterial enzyme essential for daughter cell separation. Structure 18:1184–1190. https://doi.org/10.1016/j.str.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  9. Ruggiero A, Squeglia F, Marasco D et al (2011) X-ray structural studies of the entire extracellular region of the serine/threonine kinase PrkC from Staphylococcus aureus. Biochem J 435:33–41. https://doi.org/10.1042/BJ20101643

    Article  CAS  PubMed  Google Scholar 

  10. Kaufmann SHE, McMichael AJ (2005) Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Nat Med 11:S33-44. https://doi.org/10.1038/nm1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Guo J (2012) Advances in the treatment of pulmonary tuberculosis. J Thorac Dis. https://doi.org/10.3978/j.issn.2072-1439.2012.10.10

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dye C, Watt CJ, Bleed D (2002) Low access to a highly effective therapy: a challenge for international tuberculosis control. Bull World Health Organ 80:437–444

    PubMed  PubMed Central  Google Scholar 

  13. Latent Tuberculosis Infection: updated and consolidated guidelines for programmatic management.

  14. Corbett EL, Watt CJ, Walker N et al (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163:1009–1021. https://doi.org/10.1001/archinte.163.9.1009

    Article  PubMed  Google Scholar 

  15. Velayati AA, Masjedi MR, Farnia P et al (2009) Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran. Chest 136:420–425. https://doi.org/10.1378/chest.08-2427

    Article  PubMed  Google Scholar 

  16. Rowland K (2012) Totally drug-resistant TB emerges in India. Nature. https://doi.org/10.1038/nature.2012.9797

    Article  PubMed  PubMed Central  Google Scholar 

  17. Migliori GB, De Iaco G, Besozzi G et al (2007) First tuberculosis cases in Italy resistant to all tested drugs. Euro Surveill 12(E070517):1. https://doi.org/10.2807/esw.12.20.03194-en

    Article  Google Scholar 

  18. Mylliemngap BJ, Borthakur A, Velmurugan D, Bhattacharjee A (2012) Insilico analysis and molecular docking of resuscitation promoting factor B (RpfB) protein of Mycobacterium tuberculosis. Bioinformation 8:646–651. https://doi.org/10.6026/97320630008646

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mukamolova GV, Turapov OA, Young DI et al (2002) A family of autocrine growth factors in Mycobacterium tuberculosis. Mol Microbiol 46:623–635. https://doi.org/10.1046/j.1365-2958.2002.03184.x

    Article  CAS  PubMed  Google Scholar 

  20. Muñoz-Elías EJ, Timm J, Botha T et al (2005) Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect Immun 73:546–551. https://doi.org/10.1128/IAI.73.1.546-551.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tufariello JM, Mi K, Xu J et al (2006) Deletion of the Mycobacterium tuberculosis resuscitation-promoting factor Rv1009 gene results in delayed reactivation from Chronic Tuberculosis. Infect Immun 74:2985–2995. https://doi.org/10.1128/IAI.74.5.2985-2995.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. https://doi.org/10.1038/31159

    Article  CAS  PubMed  Google Scholar 

  23. Hett EC, Chao MC, Deng LL, Rubin EJ (2008) A mycobacterial enzyme essential for cell division synergizes with resuscitation-promoting factor. PLoS Pathog 4:e1000001. https://doi.org/10.1371/journal.ppat.1000001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fan A, Jian W, Shi C et al (2010) Production and characterization of monoclonal antibody against Mycobacterium tuberculosis RpfB domain. Hybridoma 29:327–332. https://doi.org/10.1089/hyb.2010.0007

    Article  CAS  PubMed  Google Scholar 

  25. Dwivedi VD, Arya A, Sharma T et al (2020) Computational investigation of phytomolecules as resuscitation-promoting factor B (RpfB) inhibitors for clinical suppression of Mycobacterium tuberculosis dormancy reactivation. Infect Genet Evol 83:104356

    Article  CAS  PubMed  Google Scholar 

  26. Dwivedi VD, Arya A, Sharma T et al (2020) Computational investigation of phytomolecules as resuscitation-promoting factor B (RpfB) inhibitors for clinical suppression of Mycobacterium tuberculosis dormancy reactivation. Infect, Genet Evol 83:104356. https://doi.org/10.1016/j.meegid.2020.104356

    Article  CAS  PubMed  Google Scholar 

  27. Demina GR, Makarov VA, Nikitushkin VD et al (2009) Finding of the Low molecular weight inhibitors of resuscitation promoting factor enzymatic and resuscitation activity. PLoS ONE 4:e8174. https://doi.org/10.1371/journal.pone.0008174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gupta VK, Kumar MM, Singh D et al (2018) Drug targets in dormant Mycobacterium tuberculosis: can the conquest against tuberculosis become a reality? Infect Dis 50:81–94. https://doi.org/10.1080/23744235.2017.1377346

    Article  Google Scholar 

  29. Gupta M, Sharma R, Kumar A (2018) Docking techniques in pharmacology: how much promising? Comput Biol Chem 76:210–217. https://doi.org/10.1016/j.compbiolchem.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  30. Kumar S, Paul P, Yadav P et al (2022) A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle. Comput Biol Med 142:105231. https://doi.org/10.1016/j.compbiomed.2022.105231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruggiero A, Marchant J, Squeglia F et al (2013) Molecular determinants of inactivation of the resuscitation promoting factor B from Mycobacterium tuberculosis. J Biomol Struct Dyn 31:195–205. https://doi.org/10.1080/07391102.2012.698243

    Article  CAS  PubMed  Google Scholar 

  33. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  34. Labbé CM, Rey J, Lagorce D et al (2015) MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Res 43:W448-454. https://doi.org/10.1093/nar/gkv306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin K, Li D, Ye Y et al (2022) Friction behavior of 2D hydrogenated diamond-like films and bilayer graphene. Diam Relat Mater 127:109179. https://doi.org/10.1016/j.diamond.2022.109179

    Article  CAS  Google Scholar 

  36. Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. J Chem Inf Model 61:3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

    Article  CAS  PubMed  Google Scholar 

  37. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schrödinger Release 2022–3: Maestro, Schrödinger, LLC, New York, 2021.

  39. Bowers KJ, Chow DE, Xu H, et al (2006) Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In: SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. pp 43–43

  40. Schrödinger Release 2022–3: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2021. Maestro-Desmond Interoperability Tools, Schrödinger, New York, 2021.

  41. Grant BJ, Rodrigues APC, ElSawy KM et al (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22:2695–2696. https://doi.org/10.1093/bioinformatics/btl461

    Article  CAS  PubMed  Google Scholar 

  42. Jolliffe I, Lovric M (2011) International encyclopedia of statistical science. Principal Component Analysis. Springer, Berlin, pp 1094–1096

    Google Scholar 

  43. Bao L, Yu J, Morigentu M, et al (2022) A computer simulation-based study on the intervention of active ingredients of Mongolian medicine into the S-protein of SARS-CoV-2-associated variant Omicron. Chemistry

  44. Bhowmik D, Jagadeesan R, Rai P et al (2021) Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. J Biomol Struct Dyn 39:1838–1852. https://doi.org/10.1080/07391102.2020.1739557

    Article  CAS  PubMed  Google Scholar 

  45. Squeglia F, Romano M, Ruggiero A et al (2013) Carbohydrate recognition by RpfB from Mycobacterium tuberculosis unveiled by crystallographic and molecular dynamics analyses. Biophys J 104:2530–2539. https://doi.org/10.1016/j.bpj.2013.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh A, Kumar S, Gupta VK et al (2022) (2022) Computational assessment of Withania somnifera phytomolecules as putative inhibitors of Mycobacterium tuberculosis CTP synthase PyrG. J Biomol Struct Dyn. https://doi.org/10.1080/073911022074142

    Article  PubMed  Google Scholar 

Download references

Funding

This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.A.R. and R.K.M; Data curation, M.G., M.A. and B.R.A.S.; Formal analysis, A.A.R., M.G., M.A., B.R.A.S., A.A., M.A.N., M.A., Y.A., M.Ali, M.M.M., A.S.S.A., M.A., S.M.A., R.A.F.; Methodology, , A.A.R., M.G., M.A., B.R.A.S., A.A., M.A.N., M.A., Y.A., M.Ali, M.M.M., A.S.S.A., M.A., S.M.A., R.A.F.; Supervision, A.A.R. and R.K.M.; Validation, , A.A.R., M.G., M.A., B.R.A.S., A.A., M.A.N., M.A., Y.A., M.Ali, M.M.M., A.S.S.A., M.A., S.M.A., R.A.F.; Methodology, , A.A.R., M.G., M.A., B.R.A.S., A.A., M.A.N., M.A., Y.A., M. Ali, M.M.M., A.S.S.A., M.A., S.M.A., R.A.F., R.K.M.; Writing—original draft, A.A.R. and R.K.M.; All authors reviewed the manuscript.

Corresponding authors

Correspondence to Ali A. Rabaan or Ranjan K. Mohapatra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2584 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabaan, A.A., Garout, M., Aljeldah, M. et al. Anti-tubercular activity evaluation of natural compounds by targeting Mycobacterium tuberculosis resuscitation promoting factor B inhibition: An in silico study. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10632-8

Keywords

Navigation