Log in

Structural based screening of potential inhibitors of SMAD4: a step towards personalized medicine for gall bladder and other associated cancers

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Gall bladder cancer (GBC) is an aggressive and most common malignancy of biliary tract lacking effective treatment due to unavailability of suitable biomarkers and therapeutics. SMAD4 is an essential mediator of transforming growth factor-β pathway involved in various cellular processes like growth, differentiation and apoptosis and also recognized as therapeutic target for GBC and other gastrointestinal tract cancers. In the present study, 3D structure of SMAD4 mutants was optimized through molecular dynamics simulation (MDS) along with wildtype. Furthermore, binding site of protein was predicted through hybrid approach and structural based virtual screening against two drug libraries was performed followed by docking. MDS of top docking score protein–ligand complexes were carried, and binding free energy was rescored. Two potential inhibitors, namely ZINC2098840 and ZINC8789167, were screened that displayed higher binding affinity towards mutant proteins compared with wildtype and both hydrophilic as well as hydrophobic interactions play a crucial role during protein–ligand binding. Current study identified novel and potent inhibitors of SMAD4 mutant that could be used as a drug candidate for the development of personalized medicine for gall bladder and other associated cancers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets supporting the conclusion of this article are included within the article/supplementary material.

Abbreviations

GBC:

Gall bladder cancer

GROMACS:

Groningen machine for chemical simulation

MDS:

Molecular dynamics simulation

MMD:

Million molecular database

MMPBSA:

Molecular mechanics Poisson Boltzmann surface area

MT:

Mutant

NCD:

Natural compound database

PDB:

Protein data bank

Rg:

Radius of gyration

RMSD:

Root-mean-square deviation

RMSF:

Root-mean-square fluctuation

SAD:

SMAD4 activated domain

SMAD4:

Mothers against decapentaplegic homolog 4

SNP:

Single nucleotide polymorphism

SNV:

Single nucleotide variant

TGF-β:

Transforming growth factor-β

WT:

Wildtype

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  3. MathewGeorgeJKVasudevanJames APSKMDFV (2019) Transition of cancer in populations in India. Cancer Epidemiol 58:111–120

    Article  Google Scholar 

  4. Mehrotra R, Tulsyan S, Hussain S et al (2018) Genetic landscape of gallbladder cancer: global overview. Mutat Res 778:61–71

    Article  CAS  Google Scholar 

  5. Kanthan R, Senger JL, Ahmed S, Kanthan SC (2015) Gallbladder cancer in the 21st century. J Oncol 2015:967472

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hundal R, Shaffer EA (2012) Gallbladder cancer: epidemiology and outcome. Clin Epidemiol 6:99–109

    Google Scholar 

  7. Stinton LM, Shaffer EA (2012) Epidemiology of gallbladder disease: cholelithiasis and cancer. Gut Liver 6:172–187

    Article  PubMed  PubMed Central  Google Scholar 

  8. Attisano L, Wrana JL (2002) Signal transduction by the TGF-β superfamily. Science 296:1646–1647

    Article  CAS  PubMed  Google Scholar 

  9. Connolly EC, Freimuth J, Akhurst RJ (2012) Complexities of TGF-β targeted cancer therapy. Int J Biol Sci 8:964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Derynck R, Gelbart WM, Harland RM et al (1996) Nomenclature: vertebrate mediators of TGFβ family signals. Cell 87:173

    Article  CAS  PubMed  Google Scholar 

  11. Shi Y, Hata A, Lo RS, Massague J, Pavletich NP (1997) A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388:87

    Article  CAS  PubMed  Google Scholar 

  12. Lin LH, Chang KW, Cheng HW, Liu CJ (2019) Somatic SMAD4 mutations in head and neck carcinoma are associated with tumor progression. Front Oncol 9:1379

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hernanda PY, Chen K, Das AM et al (2015) SMAD4 exerts a tumor-promoting role in hepatocellular carcinoma. Oncogene 34:5055–5068

    Article  CAS  PubMed  Google Scholar 

  14. **a X, Wu W, Huang C et al (2015) SMAD4 and its role in pancreatic cancer. Tumor Biol 36:111–119

    Article  CAS  Google Scholar 

  15. Salovaara R, Roth S, Loukola A et al (2002) Frequent loss of SMAD4/DPC4 protein in colorectal cancers. Gut 51:56–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qin B, Lam SS, Lin K (1999) Crystal structure of a transcriptionally active Smad4 fragment. Structure 7:1493–1503

    Article  CAS  PubMed  Google Scholar 

  17. Maurice D, Pierreux CE, Howell M, Wilentz RE, Owen MJ, Hill CS (2001) Loss of Smad4 Function in pancreatic tumors C-terminal Truncation leads to decreased stability. J Biol Chem 276:43175–43181

    Article  CAS  PubMed  Google Scholar 

  18. Wardell CP, Fujita M, Yamada T et al (2018) Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J Hepatol 68:959–969

    Article  CAS  PubMed  Google Scholar 

  19. Weinberg BA, **u J, Lindberg MR et al (2019) Molecular profiling of biliary cancers reveals distinct molecular alterations and potential therapeutic targets. J Gastrointest Oncol 10:652

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zehir A, Benayed R, Shah RH et al (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Med 23:703

    Article  CAS  PubMed  Google Scholar 

  21. Kumar R, Kumar R, Tanwar P et al (2020) Deciphering the impact of missense mutations on structure and dynamics of SMAD4 protein involved in pathogenesis of gall bladder cancer. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1740789

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rose PW, Beran B, Bi C et al (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39:D392–D401

    Article  CAS  PubMed  Google Scholar 

  23. Huang B (2009) MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13:325–330

    Article  CAS  PubMed  Google Scholar 

  24. Yang J, Roy A, Zhang Y (2012) BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions. Nucleic Acids Res 41:D1096–D1103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mozhayskiy V, Tagkopoulos I (2012) Horizontal gene transfer dynamics and distribution of fitness effects during microbial in silico evolution. BMC Bioinform 13:S13

    Article  Google Scholar 

  27. Mukherjee G, Jayaram B (2013) A rapid identification of hit molecules for target proteins via physico-chemical descriptors. Phys Chem Chem Phys 15:9107–9116

    Article  CAS  PubMed  Google Scholar 

  28. Irwin JJ, Shoichet BK (2005) ZINC− a free database of commercially available compounds for virtual screening. J Chem Inf Mod 45:177–182

    Article  CAS  Google Scholar 

  29. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  PubMed  Google Scholar 

  32. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  33. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  34. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  35. Schuttelkopf AW, Van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363

    Article  PubMed  CAS  Google Scholar 

  36. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  37. Kumari R, Kumar R, Open Source Drug Discovery Consortium & Lynn A (2014) g_mmpbsa: A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962

    Article  CAS  Google Scholar 

  38. Kumar R, Maurya R, Saran S (2019) Introducing a simple model system for binding studies of known and novel inhibitors of AMPK: a therapeutic target for prostate cancer. J Biomol Struct Dyn 37:781–795

    Article  CAS  PubMed  Google Scholar 

  39. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  40. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  CAS  PubMed  Google Scholar 

  41. Sarshekeh AM, Advani S, Overman MJ et al (2017) Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS ONE 12:e0178275

    Article  CAS  Google Scholar 

  42. Kumar R, Maurya R, Saran S (2017) Identification of novel inhibitors of the translationally controlled tumor protein (TCTP): insights from molecular dynamics. Mol BioSyst 13:510–524

    Article  CAS  PubMed  Google Scholar 

  43. Simmerling C, Strockbine B, Roitberg AE (2002) All-atom structure prediction and folding simulations of a stable protein. J Am Chem Soc 124:11258–11259

    Article  CAS  PubMed  Google Scholar 

  44. Dong YW, Liao ML, Meng XL, Somero GN (2018) Structural flexibility and protein adaptation to temperature: molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proc Natl Acad Sci USA 115:1274–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao H, Caflisch A (2015) Molecular dynamics in drug design. Eur J Med Chem 91:4–14

    Article  CAS  PubMed  Google Scholar 

  47. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen YC (2015) Beware of docking! Trends Pharmacol Sci 36:78–95

    Article  PubMed  CAS  Google Scholar 

  49. Kumar R, Saran S (2018) Structure, molecular dynamics simulation, and docking studies of Dictyostelium discoideum and human STRAPs. J Cell Biochem 119:7177–7191

    Article  CAS  PubMed  Google Scholar 

  50. Wang C, Greene DA, **ao L, Qi R, Luo R (2018) Recent developments and applications of the MMPBSA method. Front Mol Biosci 4:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. McNicholas S, Potterton E, Wilson KS, Noble MEM (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallog 67:386–394

    Article  CAS  Google Scholar 

  52. Gagan J, Van Allen EM (2015) Next-generation sequencing to guide cancer therapy. Genome Med 7:80

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sicklick JK, Fanta PT, Shimabukuro K, Kurzrock R (2016) Genomics of gallbladder cancer: the case for biomarker-driven clinical trial design. Cancer Metastasis Rev 35:263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schror K (2011) Pharmacology and cellular/molecular mechanisms of action of aspirin and non-aspirin NSAIDs in colorectal cancer. Best Pract Res Clin Gastroenterol 25:473–484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Rakesh and Rahul thank Indian Council of Medical Research and University Grant Commission, respectively, for their research fellowships.

Funding

Indian Council of Medical Research, Grant/Award Number: 5/13/1/TF/2015/NCD-III.

Author information

Authors and Affiliations

Authors

Contributions

RK. and PT. conceptualized and designed the study. RK. and RK. performed the experiments. RK. analysed the data and wrote manuscript. PT. provided laboratory infrastructure. All authors read and approved the final version of manuscript.

Corresponding author

Correspondence to Pranay Tanwar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, R. & Tanwar, P. Structural based screening of potential inhibitors of SMAD4: a step towards personalized medicine for gall bladder and other associated cancers. Mol Divers 25, 1945–1961 (2021). https://doi.org/10.1007/s11030-021-10210-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10210-w

Keywords

Navigation