Log in

Novel metal complexes containing 6-methylpyridine-2-carboxylic acid as potent α-glucosidase inhibitor: synthesis, crystal structures, DFT calculations, and molecular docking

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

A Correction to this article was published on 17 September 2021

This article has been updated

Abstract

The World Health Organization (WHO) report shows that diabetes mellitus (DM) will be one of the ten deadly diseases in the near future. The best way to prevent DM is to decrease blood glucose levels and keep under control; therefore, it is important to design and synthesize the effective inhibitors that can be used in the treatment of DM disease. In this respect, a series of ten metal complexes containing 6-methylpyridine-2-carboxylic acid {[Cr(6-mpa)2(H2O)2]·H2O·NO3, (1), [Mn(6-mpa)2(H2O)2], (2), [Ni(6-mpa)2(H2O)2]·2H2O, (3), [Hg(6-mpa)2(H2O)], (4), [Cu(6-mpa)2(Py)], (5), [Cu(6-mpa)2(H2O)]·H2O, (6), [Zn(6-mpa)2(H2O)]·H2O, (7), [Fe(6-mpa)3], (8), [Cd(6-mpa)2(H2O)2]·2H2O, (9), and [Co(6-mpa)2(H2O)2]·2H2O, (10)} were synthesized as α-glucosidase inhibitors. We found that the IC50 values of the synthesized complexes ranged from 0.247 ± 0.10 to > 600 μM against α-glucosidase. The spectral analyses for these complexes characterized by XRD and LC–MS/MS were also carried out by FT-IR and UV–Vis spectra. Additionally, the DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level was applied to obtain optimal molecular geometries and spectral behaviors as well as significant contributions to the electronic transitions for the complexes. The molecular docking study was also performed to display interactions between the target protein (the template structure Saccharomyces cerevisiae isomaltase) and the synthesized complexes (110).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Cai C-Y, Rao L, Rao Y, Guo J-X, **ao Z-Z, Cao J-Y, Huang Z-S, Wang B (2017) Analogues of xanthones—chalcones and bis-chalcones as α-glucosidase inhibitors and anti-diabetes candidates. Eur J Med Chem 130:51–59. https://doi.org/10.1016/j.ejmech.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  2. Zhen J, Dai Y, Villani T, Giurleo D, Simon JE, Wu Q (2017) Synthesis of novel flavonoid alkaloids as α-glucosidase inhibitors. Bioorg Med Chem 25(20):5355–5364. https://doi.org/10.1016/j.bmc.2017.07.055

    Article  CAS  PubMed  Google Scholar 

  3. Ghani U (2015) Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: finding needle in the haystack. Eur J Med Chem 103:133–162. https://doi.org/10.1016/j.ejmech.2015.08.043

    Article  CAS  PubMed  Google Scholar 

  4. Adisakwattana S, Charoenlertkul P, Yibchok-anun S (2009) α-Glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. J Enzym Inhib Med Chem 24(1):65–69. https://doi.org/10.1080/14756360801906947

    Article  CAS  Google Scholar 

  5. Chiasson J, Josse R, Gomis R, Hanefeld M, Karasik A, Laakso M (2004) STOP-NIDDM Trial Research Group: acarbose for the prevention of type 2 diabetes, hypertension and cardiovascular disease in subjects with impaired glucose tolerance: facts and interpretations concerning the critical analysis of the STOP-NIDDM Trial data. Diabetologia 47(6):969–975. https://doi.org/10.1016/S0140-6736(02)08905-5

    Article  CAS  PubMed  Google Scholar 

  6. Santos CM, Freitas M, Fernandes E (2018) A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur J Med Chem 157:1460–1479. https://doi.org/10.1016/j.ejmech.2018.07.073

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Ma L, Li Z, Du Z, Liu Z, Qin J, Wang X, Huang Z, Gu L, Chen AS (2004) Synergetic inhibition of metal ions and genistein on α-glucosidase. FEBS Lett 576(1–2):46–50. https://doi.org/10.1016/j.febslet.2004.08.059

    Article  CAS  PubMed  Google Scholar 

  8. Yoshikawa Y, Hirata R, Yasui H, Sakurai H (2009) Alpha-glucosidase inhibitory effect of anti-diabetic metal ions and their complexes. Biochimie 91(10):1339–1341. https://doi.org/10.1016/j.biochi.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  9. Avcı D, Altürk S, Sönmez F, Tamer Ö, Başoğlu A, Atalay Y, Kurt BZ, Dege N (2018) Three novel Cu (II), Cd (II) and Cr(III) complexes of 6 − Methylpyridine − 2 − carboxylic acid with thiocyanate: synthesis, crystal structures, DFT calculations, molecular docking and α-Glucosidase inhibition studies. Tetrahedron 74(50):7198–7208. https://doi.org/10.1016/j.tet.2018.10.054

    Article  CAS  Google Scholar 

  10. Avcı D, Altürk S, Sönmez F, Tamer Ö, Başoğlu A, Atalay Y, Zengin Kurt B, Dege N (2019) A novel series of M (II) complexes of 6-methylpyridine-2-carboxylic acid with 4 (5) methylimidazole: synthesis, crystal structures, α-glucosidase activity, density functional theory calculations and molecular docking. Appl Organomet Chem 33(7):e4935. https://doi.org/10.1002/aoc.4935

    Article  CAS  Google Scholar 

  11. Avcı D, Altürk S, Sönmez F, Tamer Ö, Başoğlu A, Atalay Y, Zengin Kurt B, Öztürk D, Dege N (2019) A new dinuclear copper (II) complex of 2, 5–Furandicarboxyclic acid with 4 (5)-Methylimidazole as a high potential α-glucosidase inhibitor: synthesis, crystal structure, cytotoxicity study, and TD/DFT calculations. Appl Organomet Chem 33(3):e4725. https://doi.org/10.1002/aoc.4725

    Article  CAS  Google Scholar 

  12. Zheng J, Ma L (2015) Silver (I) complexes of 2, 4-dihydroxybenzaldehyde–amino acid Schiff bases—novel noncompetitive α-glucosidase inhibitors. Bioorg Med Chem Lett 25(10):2156–2161. https://doi.org/10.1016/j.bmcl.2015.03.078

    Article  CAS  PubMed  Google Scholar 

  13. Avcı D, Altürk S, Sönmez F, Tamer Ö, Başoğlu A, Atalay Y, Kurt BZ, Dege N (2019) A novel series of mixed-ligand M (II) complexes containing 2, 2′-bipyridyl as potent α-glucosidase inhibitor: synthesis, crystal structure, DFT calculations, and molecular docking. JBIC, J Biol Inorg Chem 24(5):747–764. https://doi.org/10.1007/s00775-019-01688-9

    Article  CAS  PubMed  Google Scholar 

  14. Constable EC, Steel PJ (1989) N, N′-Chelating biheteroaromatic ligands; a survey. Coord Chem Rev 93(2):205–223. https://doi.org/10.1016/0010-8545(89)80016-5

    Article  CAS  Google Scholar 

  15. Usman A, Fun H-K, Chantrapromma S, Zhang M, Chen Z-F, Tang Y-Z, Shi S-M, Liang H (2003) Diacetatobis (2-aminobenzothiazole) zinc (II). Acta Crystallogr E 59(1):m41–m43. https://doi.org/10.1107/S1600536802021864

    Article  CAS  Google Scholar 

  16. Adams H, Bailey NA, Crane JD, Fenton DE, Latour J-M, Williams JM (1990) Manganese (II) and iron (III) complexes of the tridentate ligands bis (benzimidazol-2-ylmethyl)-amine (L 1) and-methylamine (L 2). Crystal structures of [MnL1(CH3CO2)2],[FeL2Cl3], and [Fe2 L12(µ-O){µ-(CH3)3CCO2}2][ClO4]2. J Chem Soc, Dalton Trans 5:1727–1735. https://doi.org/10.1039/DT9900001727

    Article  Google Scholar 

  17. Driessen W, De Graaff R, Parlevliet F, Reedijk J, De Vos R (1994) Transition metal compounds of the tridentate pyrazole substituted amine ligand bis (2-(3,5-dimethyl-1-pyrazolyl) ethyl) ethylamine (ddae). X-ray structures of [Co(ddae)(NO3)2],[Cu(ddae)(NO3)(H2O)](NO3) and [Cu(ddae)(Cl)2]· C2H5OH. Inorg Chim Acta 216(1-2):43–49. https://doi.org/10.1016/0020-1693(93)03707-H

    Article  CAS  Google Scholar 

  18. Gollapalli M, Taha M, Javid MT, Almandil NB, Rahim F, Wadood A, Mosaddik A, Ibrahim M, Alqahtani MA, Bamarouf YA (2019) Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor. Bioorg Chem 85:33–48. https://doi.org/10.1002/1099-0682(200011)2000:11%3c2363:AID-EJIC2363%3e3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  19. Groß F, Müller-Hartmann A, Vahrenkamp H (2000) Diphosphate–Zinc complexes with tridentate coligands. Eur J Med Chem 11:2363–2370. https://doi.org/10.1016/j.bioorg.2018.12.021

    Article  CAS  Google Scholar 

  20. Demadis KD, Katarachia SD (2004) Metal-phosphonate chemistry: synthesis, crystal structure of calcium-amino tris-(methylene phosphonate) and inhibition of CaCO3 crystal growth. Phosphorus, Sulfur Silicon Relat Elem 179(3):627–648. https://doi.org/10.1080/10426500490441514

    Article  CAS  Google Scholar 

  21. Mao J-G (2007) Structures and luminescent properties of lanthanide phosphonates. Coord Chem Rev 251(11–12):1493–1520. https://doi.org/10.1016/j.ccr.2007.02.008

    Article  CAS  Google Scholar 

  22. Monot J, Petit M, Lane SM, Guisle I, Léger J, Tellier C, Talham DR, Bujoli B (2008) Towards zirconium phosphonate-based microarrays for probing DNA–protein interactions: critical influence of the location of the probe anchoring groups. J Am Chem Soc 130(19):6243–6251. https://doi.org/10.1021/ja711427q

    Article  CAS  PubMed  Google Scholar 

  23. Hardy AM, LaDuca RL (2009) Synthesis and structure of a cobalt dicyanamide chain coordination polymer incorporating a long-spanning hydrogen-bonding capable diimine with a novel binodal (4, 6)-connected supramolecular topology. Inorg Chem Commun 12(4):308–311. https://doi.org/10.1016/j.inoche.2009.02.002

    Article  CAS  Google Scholar 

  24. Umeda J, Suzuki M, Kato M, Moriya M, Sakamoto W, Yogo T (2010) Proton conductive inorganic–organic hybrid membranes functionalized with phosphonic acid for polymer electrolyte fuel cell. J Power Sources 195(18):5882–5888. https://doi.org/10.1016/j.jpowsour.2009.12.078

    Article  CAS  Google Scholar 

  25. Saito Y, Takemoto J, Hutchinson B, Nakamoto K (1972) Infrared studies of coordination compounds containing low-oxidation-state metals. I. Tris (2, 2′-bipyridine) and tris (1, 10-phenanthroline) complexes. Inorg Chem 11(9):2003–2011. https://doi.org/10.1021/ic50115a004

    Article  CAS  Google Scholar 

  26. Amani V, Safari N, Khavasi HR (2007) Synthesis, characterization and crystal structure determination of iron (III) hetero-ligand complexes containing 2, 2′-bipyridine, 5, 5′-dimethyl-2, 2′-bipyridine and chloride,[Fe (bipy) Cl4][bipy· H] and [Fe (dmbipy) 2Cl2][FeCl4]. Polyhedron 26(15):4257–4262. https://doi.org/10.1016/j.poly.2007.05.050

    Article  CAS  Google Scholar 

  27. Mobin SM, Saini AK, Mishra V, Chaudhary A (2016) A series of new heteroleptic Hg(II) complexes: synthesis, crystal structures and photophysical properties. Polyhedron 110:131–141. https://doi.org/10.1016/j.poly.2016.02.037

    Article  CAS  Google Scholar 

  28. Shechter Y, Karlish SJ (1980) Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature 284(5756):556. https://doi.org/10.1038/284556a0

    Article  CAS  PubMed  Google Scholar 

  29. Coulston L, Dandona P (1980) Insulin-like effect of zinc on adipocytes. Diabetes 29(8):665–667. https://doi.org/10.2337/diab.29.8.665

    Article  CAS  PubMed  Google Scholar 

  30. Sorenson JR (1989) 6 copper complexes offer a physiological approach to treatment of chronic diseases. Prog Med Chem 26:437–568. https://doi.org/10.1016/S0079-6468(08)70246-7

    Article  CAS  PubMed  Google Scholar 

  31. Anderson RA, Cheng N, Bryden NA, Polansky MM, Cheng N, Chi J, Feng J (1997) Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 46(11):1786–1791. https://doi.org/10.2337/diab.46.11.1786

    Article  CAS  PubMed  Google Scholar 

  32. Yasui H, Tamura A, Takino T, Sakurai H (2002) Structure-dependent metallokinetics of antidiabetic vanadyl-picolinate complexes in rats: studies on solution structure, insulinomimetic activity, and metallokinetics. J Inorg Biochem 91(1):327–338. https://doi.org/10.1016/S0162-0134(02)00443-9

    Article  CAS  PubMed  Google Scholar 

  33. Altürk S, Avcı D, Kurt BZ, Tamer Ö, Başoğlu A, Sönmez F, Atalay Y, Dege N (2019) Two new Co (II) complexes of picolinate: synthesis, crystal structure, spectral characterization, α-glucosidase inhibition and TD/DFT study. J Inorg Organomet Polym Mater 29(4):1265–1279. https://doi.org/10.1007/s10904-019-01090-7

    Article  CAS  Google Scholar 

  34. Yasumatsu N, Yoshikawa Y, Adachi Y, Sakurai H (2007) Antidiabetic copper (II)-picolinate: impact of the first transition metal in the metallopicolinate complexes. Bioorg Med Chem 15(14):4917–4922. https://doi.org/10.1016/j.bmc.2007.04.062

    Article  CAS  PubMed  Google Scholar 

  35. Yoshikawa Y, Ueda E, Kawabe K, Miyake H, Takino T, Sakurai H, Kojima Y (2002) Development of new insulinomimetic zinc (II) picolinate complexes with a Zn (N2O2) coordination mode: structure characterization, in vitro, and in vivo studies. JBIC, J Biol Inorg Chem 7(1–2):68–73. https://doi.org/10.1007/s007750100266

    Article  CAS  PubMed  Google Scholar 

  36. Ueda E, Yoshikawa Y, Sakurai H, Kojima Y, Kajiwara NM (2005) In vitro alpha-glucosidase inhibitory effect of Zn (II) complex with 6-methyl-2-picolinmethylamide. Chem Pharm Bull 53(4):451–452. https://doi.org/10.1248/cpb.53.451

    Article  CAS  Google Scholar 

  37. Kukovec B-M, Vaz PD, Popovic Z, Calhorda MJ, Furić K, Pavlović G, Linarić MR (2008) Pseudopolymorphism in nickel (II) complexes with 6-methylpicolinate. Synthesis, structural, spectroscopic, thermal, and density functional theory studies. Cryst Growth Des 8(9):3465–3473. https://doi.org/10.1021/cg800512k

    Article  CAS  Google Scholar 

  38. Kukovec B-M, Popović Z, Kozlevčar B, Jagličić Z (2008) 3D supramolecular architectures of copper (II) complexes with 6-methylpicolinic and 6-bromopicolinic acid: synthesis, spectroscopic, thermal and magnetic properties. Polyhedron 27(18):3631–3638. https://doi.org/10.1016/j.poly.2008.09.011

    Article  CAS  Google Scholar 

  39. Altürk S, Avcı D, Başoğlu A, Tamer Ö, Atalay Y, Dege N (2018) Copper (II) complex with 6-methylpyridine-2-carboxyclic acid: experimental and computational study on the XRD, FT-IR and UV–Vis spectra, refractive index, band gap and NLO parameters. Spectrochim Acta A 190:220–230. https://doi.org/10.1016/j.saa.2017.09.041

    Article  CAS  Google Scholar 

  40. Pons J, March R, Rius J, Ros J (2004) Zinc complexes of 6-methyl-2-pyridinecarboxylic acid. Crystal structure of [Zn(MeC5H3NCOO)2(H2O)]·H2O. Inorg Chim Acta 357(12):3789–3792. https://doi.org/10.1016/j.ica.2004.03.058

    Article  CAS  Google Scholar 

  41. Altürk S, Avcı D, Tamer Ö, Atalay Y, Şahin O (2016) A cobalt (II) complex with 6-methylpicolinate: synthesis, characterization, second-and third-order nonlinear optical properties, and DFT calculations. J Phys Chem Solids 98:71–80. https://doi.org/10.1016/j.jpcs.2016.06.008

    Article  CAS  Google Scholar 

  42. Sheldrick GM (2015) SHELXT–ıntegrated space-group and crystal-structure determination. Acta Crystallogr A 71(1):3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  43. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39(3):453–457. https://doi.org/10.1107/S002188980600731X

    Article  CAS  Google Scholar 

  44. Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D 65(2):148–155. https://doi.org/10.1107/S090744490804362X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun H, Ding W, Song X, Wang D, Chen M, Wang K, Zhang Y, Yuan P, Ma Y, Wang R (2017) Synthesis of 6-hydroxyaurone analogues and evaluation of their α-glucosidase inhibitory and glucose consumption-promoting activity: development of highly active 5, 6-disubstituted derivatives. Bioorg Med Chem Lett 27(15):3226–3230. https://doi.org/10.1016/j.bmcl.2017.06.040

    Article  CAS  PubMed  Google Scholar 

  46. Frisch MJ, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G et al. (2009) Gaussian 09, Revision D. 01, Gaussian. Inc, Wallingford

  47. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc, Shawnee Mission, KS

    Google Scholar 

  48. Heyd J, Scuseria GE (2004) Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J Chem Phys 121(3):1187–1192. https://doi.org/10.1063/1.1760074

    Article  CAS  PubMed  Google Scholar 

  49. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125(22):224106. https://doi.org/10.1063/1.2404663

    Article  CAS  PubMed  Google Scholar 

  50. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80(7):3265–3269. https://doi.org/10.1063/1.447079

    Article  CAS  Google Scholar 

  51. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283. https://doi.org/10.1063/1.448799

    Article  CAS  Google Scholar 

  52. Runge E, Gross EK (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997. https://doi.org/10.1103/PhysRevLett.52.997

    Article  CAS  Google Scholar 

  53. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  54. Glendening E, Reed A, Carpenter J, Weinhold F (1998) NBO Version 3.1. TCI, University of Wisconsin, Madison

  55. Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins: Struct Funct Bioinf 55(2):288–304. https://doi.org/10.1002/prot.20035

  56. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree − Fock, Møller − Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Chem Phys 100(41):16502–16513. https://doi.org/10.1021/jp960976r

    Article  CAS  Google Scholar 

  57. Varsányi G (1974) Assignments for vibrational spectra of seven hundred benzene derivatives, vol 1. Halsted Press

  58. Alizadeh R, Amani V (2016) Syntheses, crystal structures, and photoluminescence of three cadmium (II) coordination complexes based on bipyridine ligands with different positioned methyl substituents. Inorg Chim Acta 443:151–159. https://doi.org/10.1016/j.ica.2015.12.034

    Article  CAS  Google Scholar 

  59. Belicchi-Ferrari M, Bisceglie F, Cavalieri C, Pelosi G, Tarasconi P (2007) Bis (triphenylphosphine) 4-fluorobenzaldehyde thiosemicarbazone copper (I): forcing chelation through oxoanions. Polyhedron 26(14):3774–3782. https://doi.org/10.1016/j.poly.2007.04.026

    Article  CAS  Google Scholar 

  60. Gorelsky S (2014) SWizard Program Revision 4.5, University of Ottawa, Ottawa, Canada, 2010

  61. Şişman İ, Başoğlu A (2016) Effect of Se content on the structural, morphological and optical properties of Bi2Te3 − ySey thin films electrodeposited by under potential deposition technique. Mat Sci Semicon Proc 54:57–64. https://doi.org/10.1016/j.mssp.2016.07.001

    Article  CAS  Google Scholar 

  62. Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci 82(20):6723–6726. https://doi.org/10.1073/pnas.82.20.6723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78(6):4066–4073. https://doi.org/10.1063/1.445134

    Article  CAS  Google Scholar 

  64. Foster AJ, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218. https://doi.org/10.1021/ja00544a007

    Article  CAS  Google Scholar 

  65. Šponer J, Hobza P (1996) DNA base amino groups and their role in molecular interactions: ab initio and preliminary density functional theory calculations. Int J Quant Chem 57(5):959–970

    Article  Google Scholar 

  66. Gadre SR, Shrivastava IH (1991) Shapes and sizes of molecular anions via topographical analysis of electrostatic potential. J Chem Phys 94(6):4384–4390. https://doi.org/10.1063/1.460625

    Article  CAS  Google Scholar 

  67. Chemla DS, Zysss J (1987) Nonlinear optical properties of organic molecules and crystals. Academic Press, Orlando

    Google Scholar 

  68. Kamada K, Ueda M, Nagao H, Tawa K, Sugino T, Shmizu Y, Ohta K (2000) Molecular design for organic nonlinear optics: polarizability and hyperpolarizabilities of furan homologues investigated by ab initio molecular orbital method. J Phys Chem A 104(20):4723–4734. https://doi.org/10.1021/jp993806y

    Article  CAS  Google Scholar 

  69. Pierce BM (1989) A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene. J Chem Phys 91(2):791–811. https://doi.org/10.1063/1.457132

    Article  CAS  Google Scholar 

  70. Cheng LT, Tam W, Stevenson SH, Meredith GR, Rikken G, Marder SR (1991) Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J Phys Chem 95(26):10631–10643. https://doi.org/10.1021/j100179a026

    Article  CAS  Google Scholar 

  71. Kaatz P, Donley EA, Shelton DP (1998) A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements. J Chem Phys 108(3):849–856. https://doi.org/10.1063/1.475448

    Article  CAS  Google Scholar 

  72. Stähelin M, Burland D, Rice J (1992) Solvent dependence of the second order hyperpolarizability in p-nitroaniline. Chem Phys Lett 191(3–4):245–250. https://doi.org/10.1016/0009-2614(92)85295-L

    Article  Google Scholar 

  73. Adant C, Dupuis M, Bredas J (1995) Ab initio study of the nonlinear optical properties of urea: electron correlation and dispersion effects. Int J Quant Chem 56(S29):497–507. https://doi.org/10.1002/qua.560560853

    Article  Google Scholar 

  74. Taha M, Ismail NH, Lalani S, Fatmi MQ, Siddiqui S, Khan KM, Imran S, Choudhary MI (2015) Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. Eur J Med Chem 92:387–400. https://doi.org/10.1016/j.ejmech.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  75. Taha M, Ismail NH, Baharudin MS, Lalani S, Mehboob S, Khan KM, Siddiqui S, Rahim F, Choudhary MI (2015) Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential. Med Chem Res 24(3):1310–1324. https://doi.org/10.1007/s00044-014-1213-8

    Article  CAS  Google Scholar 

  76. Zheng J-W, Ma L (2016) Metal complexes of anthranilic acid derivatives: a new class of non-competitive α-glucosidase inhibitors. Chin Chem Lett 27(5):627–630. https://doi.org/10.1016/j.cclet.2016.01.052

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project Number: MFAG-117F235) and the Scientific Research Projects Unit of Sakarya University (Project Number: 2018-1-6-67).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davut Avcı.

Ethics declarations

Conflict of interest

The authors declare that there is no financial and non-financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1088 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avcı, D., Altürk, S., Sönmez, F. et al. Novel metal complexes containing 6-methylpyridine-2-carboxylic acid as potent α-glucosidase inhibitor: synthesis, crystal structures, DFT calculations, and molecular docking. Mol Divers 25, 171–189 (2021). https://doi.org/10.1007/s11030-020-10037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10037-x

Keywords

Navigation