Log in

Dynamic Mechanical Properties of a Biocomposite Reinforced with Sodiumbicarbonate-Treated Sisal Fibers at Different Frequencies

  • Published:
Mechanics of Composite Materials Aims and scope

The effect of different frequencies on the glass-transition temperature, storage and loss moduli, and dam** of untreated and sodium bicarbonate-treated sisal fibers reinforced biocomposites have been analyzed in the temperature range of 30-160°C. In addition, tensile and flexural properties of these composites were also studied as per ASTM standards. On the basis of the results obtained, it is concluded that the treated biocomposites can be used in automobile, packaging, and electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. D. Shanmugam and M. Thiruchitrambalam, “Static and dynamic mechanical properties of alkali treated unidirectional continuous palmyra palm leaf stalk fibre/jute fibre reinforced hybrid polyester composites,” Mater Des., 50, 533–542 (2013).

    Article  CAS  Google Scholar 

  2. O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, “Biocomposites reinforced with natural fibers: 2000–2010,” Prog. Polym. Sci., 37, No. 11, 1552-1596 (2012).

    Article  CAS  Google Scholar 

  3. V. Fiore, and L. Calabrese, “Effect of stacking sequence and sodium bicarbonate treatment on quasi-static and dynamic mechanical properties of flax/jute epoxy-based composites,” Materials, 12, No. 9, 1363 (2019).

    Article  CAS  Google Scholar 

  4. M. K. Gupta, R. K. Gond, and A. Bharti, “Effects of treatments on the properties of polyester based hemp composite,” Indian J. Fib. Text. Res., 43, 313-319 (2018).

    CAS  Google Scholar 

  5. M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview,” Compos. Part B: Eng., 43, No.7, 2883-2892 (2012).

    Article  CAS  Google Scholar 

  6. I. M. De Rosa, J. M. Kenny, M. Maniruzzaman, M. Moniruzzaman, M. Monti, D. Puglia, C. Santulli, and F. Sarasini, “Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres,” Compos. Sci. Technol., 71, No. 2, 246-254 (2011).

    Article  Google Scholar 

  7. L. Mathew, K. U. Joseph, and R. Joseph, “Isora fibres and their composites with natural rubber,” Prog. Rubber Plast. Recycl. Technol., 20, No. 4, 337-349 (2004).

    Article  CAS  Google Scholar 

  8. V. Tserki, N. E. Zafeiropoulos, F. Simon, and C. Panayiotou, “A study of the effect of acetylation and propionylation surface treatments on natural fibres,” Compos. Part A: App Sci Manufac., 36, No. 8, 1110-1118 (2005).

    Article  Google Scholar 

  9. A. Valadez-Gonzalez, J. M. Cervantes-Uc, R. Olayo, and P. J. Herrera-Franco, “Chemical modification of henequen fibers with an organosilane coupling agent,” Compos Part B: Eng., 30, No. 3, 321-331 (1999).

    Article  Google Scholar 

  10. S. A. Paul, K. Joseph, G. G. Mathew, L. A. Pothen, and S. Thomas, “Influence of polarity parameters on the mechanical properties of composites from polypropylene fibre and short banana fibre,” Compos. Part A: App. Sci. Manufac., 41, No. 10, 1380-1387 (2010).

    Article  Google Scholar 

  11. X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review,” J. Polym. Environ., 15, No. 1, 25-33 (2007).

    Article  Google Scholar 

  12. S. Chaitanya and I. Singh, “Sisal fiber-reinforced green composites: Effect of ecofriendly fibre treatment,” Polym. Compos., 39, No. 12, 4310-4321 (2018).

    Article  CAS  Google Scholar 

  13. Potassium bicarbonate (073508) and Sodium bicarbonate (073505) Fact Sheet, EPA Office of Pesticide Programs, Us, 2002. [Online]. Available: https://www3.epa.gov/pesticides/chem_search/regactions/registration/fs_G-135_01-Oct-04.pdf. (Accessed on March 15, 2020)

  14. J. Feng and Z. Guo, “Effects of temperature and frequency on dynamic mechanical properties of glass/epoxy composites,” J. Mater. Sci., 51, No. 5, 2747–2758 (2016).

    Article  CAS  Google Scholar 

  15. S. Mohanty, S. K. Verma, and S. K. Nayak, “Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites,” Compos. Sci. Technol., 66, No. 3-4, 538-547 (2006).

    Article  CAS  Google Scholar 

  16. L. A. Pothan, Z. Oommen, and S. Thomas, “Dynamic mechanical analysis of banana fiber reinforced polyester composites,” Compos. Sci. Technol., 63, No. 2, 283-293 (2003).

    Article  CAS  Google Scholar 

  17. M. K. Gupta and R. K. Srivastava, “Properties of sisal fibre reinforced epoxy composite,” Indian J. Fib. Text. Res., 41, 235-241 (2016).

    CAS  Google Scholar 

  18. S. Shinoj, R. S. Visvanathan, S. Panigrahi, and N. Varadharaju, “Dynamic mechanical properties of oil palm fibre (OPF)- linear low density polyethylene (LLDPE) biocomposites and study of fibre-matrix interactions,” Biosyst. Eng., 109, No. 2, 99-107 (2011).

    Article  Google Scholar 

  19. I. S. M. A. Tawakkal, M. J. Cran, and S.W. Bigger, “Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites,” Ind. Crops. Prod., 61, 74–83 (2014).

    Article  CAS  Google Scholar 

  20. T. Yu, N. Jiang and Y. Li, “Study on short ramie fiber/poly (lactic acid) composites compatibilized by maleic anhydride,” Compos. Part A: App. Sci. Manuf., 64, 139–146 (2014).

    Article  CAS  Google Scholar 

  21. M. K. Gupta and R. K. Srivastava, “Tribological and dynamic mechanical analysis of epoxy based hybrid sisal/jute composite,” Indian J. Eng. Mater. Sci., 23, 37-44 (2016).

    CAS  Google Scholar 

  22. M. Idicula, S. K. Malhotra, K. Joseph, and S. Thomas, “Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites,” Compos Sci Technol., 65, Nos. 7-8, 1077–1087 (2005).

    Article  CAS  Google Scholar 

  23. N. K. Jain and M. K. Gupta, “Hybrid teak/sal wood flour reinforced composites: Mechanical, thermal and water absorption properties,” Mater. Res. Exp., 5, No. 12, 125306 (2018).

    Article  Google Scholar 

  24. V. Fiore, T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino, and A. Valenza, “A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites,” Compos. Part B: Eng., 85, 150-60 (2016).

    Article  CAS  Google Scholar 

  25. L. A. de Oliveira, J. C. dos Santos, L. M. G. Vieira, V. Mano, R. T. Freire, and T. H. Panzera, “Eco-friendly sodium bicarbonate treatment and its effect on epoxy and polyester coir fibre composites,” Constr. Build. Mater., 211, 427-436 (2019).

    Article  Google Scholar 

  26. P. Sahu and M. K. Gupta, “Mechanical, thermal and morphological properties of sisal fibre: Effect of eco-friendly coating and treatment,” Indian J. Fib. Text. Res., 44, 199-204 (2019).

    CAS  Google Scholar 

  27. M. K. Gupta, “Effect of frequencies on dynamic mechanical properties of hybrid jute/sisal fibre reinforced epoxy composite,” Adv. Mater. Process. Technol., 3, No.4, 651–664 (2017).

    Google Scholar 

  28. S. Mohanty, S. K. Verma, and S. K. Nayak, “Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites,” Compos. Sci. Technol., 66, 538-547 (2006).

    Article  CAS  Google Scholar 

  29. L. A. Pothan, Z. Oommen, and S. Thomas, “Dynamic mechanical analysis of banana fiber reinforced polyester composites,” Compos. Sci. Technol., 63, 283-293 (2003).

    Article  CAS  Google Scholar 

  30. J. Feng and Z. Guo, “Effects of temperature and frequency on dynamic mechanical properties of glass/epoxy composites,” J. Mater. Sci., 51, 2747–2758 (2016).

    Article  CAS  Google Scholar 

  31. M. K. Gupta, “Effect of variation in frequencies on dynamic mechanical properties of jute fibre reinforced epoxy composite,” J. Mater. Environ. Sci., 9, 100-106 (2018).

    CAS  Google Scholar 

  32. M. H. Gheitha, M. A. Aziz, W. Ghori, N. Sabab, M. Asimb, M. M. Jawaid, and O. Y. Alothma,. “Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites,” J. Mat. Res. Technol., 8, No. 1, 853-60 (2019).

    Article  Google Scholar 

  33. H. Essabir , A. Elkhaoulani , K. Benmoussa, R. Bouhfid, F. Z. Arrakhiz, and A. Qaiss, “Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites,” Mater. Des., 51, 780-788 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks the Head of Mechanical Engineering Department of Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, U.P., India, for his support in performing tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Gupta.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 1, pp. 113-124, January-February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P., Gupta, M.K. Dynamic Mechanical Properties of a Biocomposite Reinforced with Sodiumbicarbonate-Treated Sisal Fibers at Different Frequencies. Mech Compos Mater 57, 81–90 (2021). https://doi.org/10.1007/s11029-021-09935-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09935-4

Keywords

Navigation