Log in

Some aspects of the design and applications of nanohoneycomb and nanofiber array structures

  • Published:
Mechanics of Composite Materials Aims and scope

Simple, inexpensive, reproducible nanofabrication techniques for nanohoneycomb and nanofiber array structures (NFASs) are reported. The resulting nanostructures can be deployed in diverse applications, including biological, medical, and industrial products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. A. M. Hynes et al., “Recent advances in silicon etching for MEMS using the ASE process,” Sensor Actuat. A-Phys., 74, 13 (1999).

    Article  Google Scholar 

  2. Gad-el-Hak Mohamed et al., The MEMS Handbook, Ch. 17, CRC Press (2002).

  3. H. Masuda et al., “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, 268, 1466 (1995).

    Article  CAS  Google Scholar 

  4. A. P. Li et al., “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., 84, 6023 (1998).

    Article  CAS  Google Scholar 

  5. O. Jessensky et al., “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett., 72, No. 10, 1173 (1998).

    Article  CAS  Google Scholar 

  6. H. Masuda, K. Yada, and A. Osaka, Japan. J. Appl. Phys. 37, L1340 (1998).

    Article  Google Scholar 

  7. S. K. Hwang et al., “Fabrication of highly ordered pore array in anodic aluminum oxide,” Korean J. Chem. Eng., 19, 467 (2002).

    Article  CAS  Google Scholar 

  8. K. Nielsch et al., “Hexagonally ordered 100 nm period nickel nanowire arrays,” Appl. Phys. Lett., 79, 1360 (2001).

    Article  CAS  Google Scholar 

  9. R. Karmhag et al., “Oxidation kinetics of nickel particles: comparison between free particles and particles in an oxide matrix,” Solar Energy, 68, 329 (2000).

    Article  CAS  Google Scholar 

  10. G. Che et al., “Carbon nanotube membranes for electrochemical energy storage and production,” Nature, 393, 346 (1998).

    Article  CAS  Google Scholar 

  11. G. Che et al., “Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method,” Chem. Mater., 10, 260 (1998).

    Article  CAS  Google Scholar 

  12. Z. B. Zhang et al., “Processing and characterization of single-crystalline ultrafine bismuth nanowires,” Chem. Mater., 11, 1659 (1999).

    Article  CAS  Google Scholar 

  13. G. Sauer et al., “Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys., 91, 3243 (2002).

    Article  CAS  Google Scholar 

  14. J. Bico et al., “Rough wetting,” Europhys. Lett., 55, 214 (2001).

    Article  CAS  Google Scholar 

  15. J. Bico et al., “Pearl drops,” Europhys. Lett., 47, 220 (1999).

    Article  CAS  Google Scholar 

  16. K. Tadanaga et al., Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method,” Chem. Mater., 12, 590 (2000).

    Article  CAS  Google Scholar 

  17. D. Öner et al., “Ultrahydrophobic surfaces. Effects of topography length scales on wettability,” Langmuir, 16, 7777 (2000).

    Article  Google Scholar 

  18. J. P. Youngblood et al., “Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma,” Macromolecules, 32, 6800 (1999).

    Article  CAS  Google Scholar 

  19. W. Chen et al., “Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples,” Langmuir, 15, 3395 (1999).

    Article  CAS  Google Scholar 

  20. Rocio Redon et al., “Contact angle studies on anodic porous alumina,” J. Colloid Interface Sci., 287, No. 2, 664 (2005).

    Article  CAS  Google Scholar 

  21. L. Feng et al., “Creation of a superhydrophobic surface from an amphiphilic polymer,” Angew. Chem. Int. Edn. Engl., 42, No. 7, 800 (2003).

    Article  CAS  Google Scholar 

  22. S. M. M. Ramos et al., “Contact angle hysteresis on nano-structured surfaces,” Surface Sci., 540, Nos. 2–3, 355 (2003).

    Article  CAS  Google Scholar 

  23. S. M. M. Ramos et al., “Wetting on nanorough surfaces,” Phys. Rev. E, 67, No. 3, 031604 (2003).

    Article  CAS  Google Scholar 

  24. H. Liu et al., “Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,” Langmuir, 20, No. 14, 5659 (2004).

    Article  CAS  Google Scholar 

  25. J. Hemmerle et al., “Mechanically responsive films of variable hydrophobicity made of polyelectrolyte multilayers,” Langmuir, 21, No. 23, 10328 (2005).

    Article  CAS  Google Scholar 

  26. Y. Jiang et al., “Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces,” Langmuir, 21, No. 5, 1986 (2005).

    Article  CAS  Google Scholar 

  27. N. Kanai et al.,“Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering,” Vacuum, 74, Nos. 3–4, 723 (2004).

    Article  CAS  Google Scholar 

  28. T. Kemmitt, “Photocatalytic titania coatings,” Curr. Appl. Phys., 4, Nos. 2–4, 189 (2004).

    Article  Google Scholar 

  29. X. Zhao, “Morphology and hydrophobicity of a polyurethane film molded on a porous anodic alumina template,” Surface Coat. Technol., 200, No. 11, 3492 (2006).

    Article  CAS  Google Scholar 

  30. W. C. Oliver et al., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, No. 6, 1564 (1992).

    Article  CAS  Google Scholar 

  31. A. C. Fischer-Cripps, Nanoindentation, Springer (2002).

  32. A. Delafargue et al., “Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters,” Int. J. Solid Struct., 41, No. 26, 7351 (2004).

    Article  Google Scholar 

  33. S. Cho et al., “Measurement of nanodisplacements and elastic properties of MEMS via the microscopic hole method,” Sens. Actuators A, 120, No. 1, 163 (2005).

    Article  Google Scholar 

  34. K. M. Jackson et al., “Fracture strength, elastic modulus and Poisson’s ratio of polycrystalline 3C thin-film silicon carbide found by microsample tensile testing,” Sens. Actuators A, 125, No. 1, 34 (2005).

    Article  Google Scholar 

  35. Y. M. Tarnopol’skii et al., “Measurements of shear characteristics of textile composites,” Comput. Struct., 76, Nos. 1–3, 115 (2000).

    Article  Google Scholar 

  36. J. M. Whitney, Structural Analysis of Laminated Anisotropic Plates, Technomic Publishing (1987).

  37. O. Jessensky et al., “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Let., 72, No. 10 (1998).

    Google Scholar 

  38. J. H. Jeon et al., “Measuring the tensile and bending properties of nanohoneycomb structures,” Mech. Compos. Mater., 42, No. 2, 173–186 (2006).

    Article  CAS  Google Scholar 

  39. D. H. Choi et al., Mechanical Characterization and Tribophysics of Nanohoneycomb Structures, Ph.D. Thesis, Pohang Univ. Sci. Technol. (2006).

  40. S. H. Ko et al., “Mechanical properties and residual stress in porous anodic alumina structures,” Thin Solid Films, 515, No. 4, 1932 (2006).

    Article  CAS  Google Scholar 

  41. N. G. Chechenin et al.,“Nanoindentation of Amorphous aluminum oxide films I. The influence of the substrate on the plastic properties,” Thin Solid Films, 261, Nos.1-2, 219 (1995).

    Article  CAS  Google Scholar 

  42. C. K. Bora et al., “Multiscale roughness and modeling of MEMS interfaces,” Trib. Lett., 19, No. 1, 37 (2005).

    Article  CAS  Google Scholar 

  43. L. Sirghi et al., “Adhesion and elasticity in nanoscale indentation,” Appl. Phys. Lett., 89, No. 24, 243118 (2006).

    Article  Google Scholar 

  44. M. J. Brukman et al., “Nanotribological properties of alkanephosphonic acid self-assembled monolayers on aluminum oxide: effects of fluorination and substrate crystallinity,” Langmuir, 22, No. 9, 3988 (2006).

    Article  CAS  Google Scholar 

  45. D. Choi et al., “Improved lateral force calibration based on the angle conversion factor in atomic force microscopy,” J. Microsc. 228, No. 2, 190 (2007).

    Article  Google Scholar 

  46. F. Matsumoto et al., “Nanometer-scale patterning of DNA in controlled intervals on a gold-disk array fabricated using ideally ordered anodic porous alumina,” Adv. Mater., 17, No. 13, 1609 (2005).

    Article  CAS  Google Scholar 

  47. D. H. Pearson et al., “Nanochannel Glass Replica Membranes,” Science, 270, No. 5233, 68 (1995).

    Article  CAS  Google Scholar 

  48. O. Lyandres et al., “Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer,” Anal. Chem., 77, No. 19, 6134 (2005).

    Article  CAS  Google Scholar 

  49. G. A. Ozin et al., “Nanochemistry: Synthesis in diminishing dimensions,” Adv. Mater., 4, No. 10, 612 (1992).

    Article  CAS  Google Scholar 

  50. T. D. Clark et al., “Supramolecular design by covalent capture. Design of a peptide cylinder via hydrogen-bond-promoted intermolecular olefin metathesis,” J. Am. Chem. Soc., 117, No. 49, 12364 (1995).

    Article  CAS  Google Scholar 

  51. H. Masuda et al., “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett., 71, No. 19, 2770 (1997).

    Article  CAS  Google Scholar 

  52. A. P. Li et al., “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater., 11, No. 6, 483 (1999).

    Article  CAS  Google Scholar 

  53. D. Choi et al., “Dependence of the mechanical properties of nanohoneycomb structures on porosity,” J. Micromech. Microeng., 17, No. 3, 501 (2007).

    Article  Google Scholar 

  54. K. Dionne et al., “Transport characterization of membranes for immunoisolation,” Biomaterials, 17, No. 3, 257 (1996).

    Article  CAS  Google Scholar 

  55. T. A. Desai, “Microfabrication technology for pancreatic cell encapsulation,” Exp. Opin. Biol. Ther. 2, No. 6, 633 (2002).

    Article  CAS  Google Scholar 

  56. D. Kim et al., “Superhydrophobic nano-wire entanglement structures,” J. Micromech. Microeng., 16, 2593 (2006).

    Article  CAS  Google Scholar 

  57. S. Lee et al., “Ultralow contact angle hysteresis and no-aging effects in superhydrophobic tangled nanofiber structures generated by controlling the pore size of a 99.5% aluminum foil,” J. Micromech. Microeng., 19, 035019 (2009).

    Article  Google Scholar 

  58. D. Kim et al., “A superhydrophobic dual-scale engineered lotus leaf,” J. Micromech. Microeng., 18, 015019 (2008).

    Article  Google Scholar 

  59. D. Kim et al., “A template-based superhydrophobic tube structure with nanofiber forests and its mass flow characteristic,” J. Micromech. Microeng., 20, 027002 (2010).

    Article  Google Scholar 

  60. S. Lee et al., “Tens of centimeter-scale flexible superhydrophobic nanofiber structures through curing process,” Lab Chip, 9, 2234 (2009).

    Article  CAS  Google Scholar 

  61. A. Lafuma et al., “Superhydrophobic states,” Nat. Mater., 2, 457 (2003).

    Article  CAS  Google Scholar 

  62. K. Lee et al., “Characteristics and self-cleaning effect of the transparent super-hydrophobic film having nanofibers array structures,” Appl. Surface Sci., 256, No. 22, 6729 (2010).

    Article  CAS  Google Scholar 

  63. I. Tanford, “Interfacial free energy and the hydrophobic effect,” Proc. Nat. Acad. Sci. USA, 76, No. 9, 4175 (1979).

    Article  CAS  Google Scholar 

  64. J. A. Reynolds et al., “Empirical correlation between hydrophobic free energy and aqueous cavity surface area,” Proc. Nat. Acad. Sci. USA, 71, 2925 (1974).

    Article  CAS  Google Scholar 

  65. B. P. Binks et al., “Solid wettability from surface energy components: relevance to Pickering emulsions,” Langmuir, 18, No. 4, 1270 (2002).

    Article  CAS  Google Scholar 

  66. M. Rosenberg et al., “Hydrophobic interactions in bacterial adhesion,” Microbial Ecology, 9, 353 (1986).

    CAS  Google Scholar 

  67. J. K. Dillon et al., “A comparison of five methods for assaying bacterial hydrophobicity,” J. Microbiol. Methods, 6, No. 1, 13 (1986).

    Article  CAS  Google Scholar 

  68. N. Mozes et al., “Methods for measuring hydrophobicity of microorganisms,” J. Microbiol. Methods, 6, 99 (1987).

    Article  Google Scholar 

  69. D. H. Kim et al., “Overcoming of nanoscale adhesion by electrostatic induction,” Curr. Appl. Phys., 9, 703 (2009).

    Article  Google Scholar 

Download references

Acknowledgments.

This research was supported by the LG Yonam Foundation, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Hwang.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 47, No. 1, pp. 17–52, January-February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, W., Lee, K.H., Park, H. et al. Some aspects of the design and applications of nanohoneycomb and nanofiber array structures. Mech Compos Mater 47, 11–36 (2011). https://doi.org/10.1007/s11029-011-9184-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-011-9184-z

Keywords

Navigation