Log in

Structure and viscosity of slags containing cerium oxide

  • Published:
Metallurgist Aims and scope

Abstract

The effect of cerium oxide on the viscosity and crystallization temperature of slags of the CaO–SiO2–Ce2O3–Al2O3–MgO oxide system is studied using an electrovibrational viscometer. The structural characteristics of hardened slag samples are studied using a Raman microscope-spectrometer. The results demonstrate that the viscosity and crystallization temperature of the slags are considerably reduced upon adding cerium oxide. An increase in content of Ce2O3 from 0% to 15% facilitates decrease in slag viscosity from 0.4 to 0.2 Pa ∙ s at 1500 °C and reduction in crystallization temperature from 1485 °C to 1397 °C. The structural analysis results reveal that the main form of polymerization of the [SiO4]-tetrahedra in the silicate regions are the structural units \({Q}_{\mathrm{Si}}^{0}\), \({Q}_{\mathrm{Si}}^{1}\), and \({Q}_{\mathrm{Si}}^{2}\) for the slags with 0%, 5%, and 10% Ce2O3, respectively, except for the slag with 15% Ce2O3, for which we noted only 2 units \({Q}_{\mathrm{Si}}^{0}\) and \({Q}_{\mathrm{Si}}^{1}\), which shows structural simplification. A second characteristic peak appears with increase in content of cerium oxide, corresponding to the [AlO6]-octahedral unit, which also indicates structure simplification. The degree of melt polymerization decreases from 0.83 to 0.52 with increase in content of cerium oxide, which explains the decrease in viscosity and crystallization temperature. Cerium oxide is used as a structure modifier to reduce the slag viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu C, Cheng G, Long H (2014) Effect of Ce2O3 and CaO/ Al2O3 on the phase, melting temperature and viscosity of CaO-Al2O3-10 mass% SiO2 based slags. High Temp Mater Proc 33(1):77–84

    Article  CAS  Google Scholar 

  2. Qi J, Liu C, Zhang C, Jiang M (2017) Effect of Ce2O3 on structure, viscosity, and crystalline phase of caO–Al2O3–Li2O–Ce2O3 slags. Metall Mater Trans B 48:11–16. https://doi.org/10.1007/s11663-016-0850-3

    Article  CAS  Google Scholar 

  3. Qi J, Liu C, Li C, Jiang M (2016) Viscous properties of new mold flux based on aluminate system with CeO2 for continuous casting of RE alloyed heat resistant steel. J Rare Earth 34(3):328

    Article  CAS  Google Scholar 

  4. Kirichenko AS, Nekhamin SM (2020) Influence of cerium oxide on the viscosity of acidic slags. Metallurg 6:52–55

    Google Scholar 

  5. Qi J, Liu C, Liu H, Li C, Jiang M (2021) Effect of rare earth oxide on the crystallization behavior of CaO-Al2O3-based mold flux for rare earth heat-resistant steel continuous casting. J Non Cryst Solids 559:120681

    Article  CAS  Google Scholar 

  6. Guoa W, Wanga Z, Zhao Z, Ana Z, Wang W (2020) Effect of CeO2 on the viscosity and structure of high-temperature melt of the CaO-SiO2(‑Al2O3)-CeO2 system. J Non Cryst Solids 540:120085

    Article  Google Scholar 

  7. Wang LJ, Wang Q, Li JM, Chou KC (2016) Dissolution mechanism of Al2O3 in refining slags containing Ce2O3. J Min Met Sect B‑metall 52(1):35–40

    Article  Google Scholar 

  8. **aohong Y, Hu L, Guoguang C, Chengchuan W, Bin W (2011) Effect of refining slag containing Ce2O3 on steel cleanliness. J Rare Earth 29(11):1079–1083

    Article  Google Scholar 

  9. Upolovnikova AG, Babenko AA, Smetannikov AN (2020) Thermodynamic modeling of cerium reduction from slags of the CaO–SiO2–Ce2O3–15Al2O3–8MgO system with calcium carbide additives. Metallurg 11:111–116

    Google Scholar 

  10. Goldshtein YG, Efimova LB (1986) Modification and microalloying of cast iron and steel. Metallurgiya, Moscow

    Google Scholar 

  11. Pilyushenko VL, Vikhlevshchuk VA (2000) Scientific and technological basis of steel microalloying. Metallurgiya, Moscow

    Google Scholar 

  12. Yu. Petryna D, Kozak OL, Shulyar BR, Petryna YD, Hredil MI (2013) Influence of alloying by rare-earth metals on the mechanical properties of 17G1S pipe steel. Mater Sci 48(5):575–581

    Article  Google Scholar 

  13. Makarchenko VD, Kindrachuk MV (2014) The influence of cerium on the mechanical and corrosion properties of low-alloy pipe steels. Kompress Energ Mashinostr (3):24–29

  14. Shtengelmeyer SV, Prusov VA, Bogechov VA (1985) Improvement of the technique for measuring viscosity with a vibration viscometer. Zavodsk Laborat 9:56–57

    Google Scholar 

  15. Voskoboynikov VG et al (1975) Properties of blast furnace slag. Metallurgiya, Moscow

    Google Scholar 

  16. Becker Y, Kazantsev LN (2009) Spectroscopy. RIC Tekhnosfera, Moscow

    Google Scholar 

  17. Qi J, Liu C, Li C, Min Y, Jiang M (2021) Effect of cerium oxide on the structure of silicate melt and aluminate melt. J Non Cryst Solids 568:120945. https://doi.org/10.1016/j.jnoncrysol.2021.120945

    Article  CAS  Google Scholar 

  18. Mills KC (1993) The Influence of structure on the physico-chemical properties of slags. ISIJ Int 33(1):148–155

    Article  CAS  Google Scholar 

  19. Kitano R, Ishii M, Uo M et al (2016) Thermodynamic properties of the CaO–AlO1.5–CeO1.5 system. ISIJ Int 56:1893–1901. https://doi.org/10.2355/isi**ternational.ISIJINT-2016-201

    Article  CAS  Google Scholar 

  20. Qi. Liu C, Zhang C et al (2017) Effect of Ce2O3 on structure, viscosity, and crystalline phase of CaO–Al2O3–Li2O–Ce2O3 slags. Metall Mater Trans B 48:11–16. https://doi.org/10.1007/s11663-016-0850-3

    Article  CAS  Google Scholar 

  21. McMillan P (1984) Structural studies of silicate glasses and melts-applications and limitations of raman spectroscopy. Am Mineral 69(7/8):622–644

    CAS  Google Scholar 

  22. Matson DW, Sharma SK, Philpotts JA (1983) The structure of high-silica alkali-silicate glasses. A raman spectroscopic investigation. J Non Cryst Solids 58(2/3):323–352. https://doi.org/10.1016/0022-3093(83)90032-7

    Article  CAS  Google Scholar 

  23. Fukumi K, Hayakawa J, Komiyama T (1990) Intensity of raman band in silicate glasses. J Non Cryst Solids 297(3):297–302. https://doi.org/10.1016/0022-3093(90)90302-3

    Article  Google Scholar 

  24. Mysen BO, Frantz JD (1993) Structure of silicate melts at high temperature: In-situ measurements in the system BaO-SiO2 to 1669 °C. Am Mineral 78(7–8):699–709

    CAS  Google Scholar 

  25. You JL, Jiang GC, Xu KD (2001) High temperature raman spectra of sodium disilicate crystal, glass and its liquid. J Non Cryst Solids 282(1):125–131. https://doi.org/10.1016/S0022-3093(01)00335-0

    Article  CAS  Google Scholar 

  26. Mysen BO, Frantz JD (1994) Silicate melts at magmatic temperatures: in-situ structure determination to 1651 °C and effect of temperature and bulk composition on the mixing behavior of structural units. Contrib Mineral Petrol 117:1–14. https://doi.org/10.1007/BF00307725

    Article  CAS  Google Scholar 

  27. Mysen BO, Finger LW, Virgo D, Seifert FA (1982) Curve-fitting of raman spectra of silicate glasses. Am Mineral 67(7/8):686–695

    CAS  Google Scholar 

  28. Kim TS, Jeong SJ, Park JH (2020) Structural understanding of MnO–SiO2–Al2O3–Ce2O3 slag via Raman, 27Al NMR and X-ray photoelectron spectroscopies. Met Mater Int 26:1872–1880

    Article  CAS  Google Scholar 

  29. Mysen BO, Virgo D, Scarfe CM (1980) Relations between the anionic structure and viscosity of silicate melts—a raman spectroscopic study. Am Mineral 65(7–8):690–710

    CAS  Google Scholar 

  30. Frantza JD, Mysen BO Raman spectra and structure of BaO-SiO2, SrO-SiO2 and CaO-SiO2 melts to 1600 °C. Chem Geol 121(1–4):155–176. https://doi.org/10.1016/0009-2541(94)00127-T

  31. Park JH, Min DJ, Song HS (2002) Structural investigation of CaO–Al2O3 and CaO–Al2O3–CaF2 slags via Fourier transform infrared spectra. ISIJ Int 42:38–43

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation grant No. 22-29-00975, https://rscf.ru/project/22-29-00975/.

The study was performed using equipment from the Shared Access Center “Composition of Compounds” of the Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Upolovnikova.

Additional information

Translated from Metallurg, No. 11, pp. 22–26, November, 2023. Russian DOI: https://doi.org/10.52351/00260827_2023_11_22

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upolovnikova, A.G., Shartdinov, R.R. & Smetannikov, A.N. Structure and viscosity of slags containing cerium oxide. Metallurgist (2024). https://doi.org/10.1007/s11015-024-01655-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11015-024-01655-z

Keywords

Navigation