Log in

Effect of Hydrogen Gas on Mechanical Properties of Pipe Metal of Main Gas Pipelines

  • Published:
Metallurgist Aims and scope

In this article, literature data on the effect of hydrogen gas and methane-hydrogen mixtures at high pressure on the metal of gas pipelines are reviewed. The properties of low-alloy ferritic steels are known to be affected due to hydrogen embrittlement: ductility and fracture toughness decrease along with the increasing rate of fatigue crack propagation (da/dN); metal deformation curve transforms with failure mode changing to quasi-spalling. The conventional mechanical tests for evaluating hydrogen embrittlement are considered. The chemical composition and microstructure of pipe steels having strength grades from X52 (K50) to X100 (K80), characteristic of investigated materials, are shown. On the basis of published data, the effect of the hydrogen content in the methane-hydrogen mixture (from 0 to 100%), the pressure of the gas medium (up to 30 MPa), and durability on the plasticity (RRA, %; δ, displacement) and fracture toughness (KIH) of metal was assessed. General influence patterns associated with the structural type and characteristics of pipe metal on its properties when subjected to hydrogen are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. ASME B31.12-2019 – Hydrogen pi** and pipelines. ASME Code for Pressure Pi**, B31 An American National Standard (Copyright ASME International) / ASME, 2019. 272 p.

References

  1. B. A. Kolachev, Hydrogen Embrittlement of Metals [In Russian], Moscow, Metallurgiya, (1985).

    Google Scholar 

  2. P. V. Gel’d and R. A. Ryabov, Hydrogen in Metals and Alloys [In Russian], Moscow, Metallurgiya, (1974).

    Google Scholar 

  3. Q. Liu and A. Atrens, “A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels,” De Gruyter. Corrosion Rev., No. 31 (3–6), 85–103 (2013).

  4. X. Li, X. Ma, J. Zhang, et al., “Review of hydrogen embrittlement in metals: hydrogen difusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention,” Acta Metall. Sin. Engl., No. 33. 759–773 (2020).

  5. O. E. Aksyutin, A. G. Ishkov, K. V. Romanov, et al., “Potential of methane-hydrogen fuel in the transition to a low-carbon economy,” Gas. Prom., No. 1/750, Special Issue, 82–85 (2017).

  6. H. Brauer, M. Simm, E. Wanzenberg, M. Henel, and O. J. Huising, “Energy transition with hydrogen pipes: Mannesmann “H2ready” and the changeover of existing gasunie natural gas networks,” PTJ, No Special 01, 16–29 (2020).

  7. N. E. Nanninga, Y. S. Levy, E. S. Drexler, R. T. Condon, A. E. Stevenson, and A. J. Slifka, “Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments,” Corros. Sci., 59, 1–9 (2012).

    Article  CAS  Google Scholar 

  8. E. Wanzenberg, M. Henel, H. Brauer, E. Tamaske, H. Neumann, A. Großmann, and K. Wackermann, “Research Project “H2-PIMS”: Transporting Hydrogen Safely in the Natural Gas Network,” Pipelinetechnik [in German], No. 06, 84 – 93 (2019).

  9. C. Engel, U. Marewski, G. Schnotz, H. Silcher, M. Steiner, and S. Zickler, “Testing mechanical fracture of materials for gas pipelines to evaluate hydrogen compatibility: preliminary results,” Pipelinetechnik [in German], No. 10–11, 34–41 (2020).

  10. D. Zhou, T. Li, D. Huang, Y. Wu, Z. Huang, W. **ao, Q. Wang, and X. Wang, “The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel,” Int. J. Hydrog., 46 (10), 7402–7414 (2021).

    Article  CAS  Google Scholar 

  11. H. P. Kyriakopoulou, P. Karmiris-Obratański, A. S. Tazedakis, N. M. Daniolos., E. C. Dourdounis, D. E. Manolakos, and D. Pantelis, “Investigation of hydrogen embrittlement susceptibility and fracture toughness drop after in situ hydrogen cathodic charging for an X65 pipeline steel,” Micromachines, No 11 (4), 430 (2020).

  12. A. S. Tazedakis, N. Voudouris, E. Dourdounis, G. Mannucci, L. F. Di Vito, and A. Fonzo, “Qualification of high-strength linepipes for hydrogen transportation based on ASME B31.12 Code,” PTJ, No. 1. 43–50 (2021).

  13. D. Stalheim, T. Boggess, C. SanMarchi, S. Jansto, B. Somerday, G. Muralidharan, and P. Sofronis, “Microstructure and mechanical property performance of commercial grade api pipeline steels in high pressure gaseous hydrogen,” in: Proc. of IPC 2010 8th Intern. Pipeline Conf. Calgary, Canada (2010), Paper IPC2010-31301.

  14. H. Brauer, M. Simm, E. Wanzenberg, and M. Henel, “Transportation of gaseous hydrogen via pipelines,” bbr. [In German], No. 11, 36–41 (2018).

  15. B. Meng, C. Gu, L. Zhang, et. al., “Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures,” Int. J. Hydrog., No. 42, 7404–7412 (2017).

  16. J. A. Ronevich, E. Ju. Song, B. P. Somerday, and C. W. San Marchi, “Hydrogen-assisted fracture resistance of pipeline welds in gaseous hydrogen,” Int. J. Hydrog., 46 (10), 7601–7614 (2021).

    Article  CAS  Google Scholar 

  17. I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer, “Hydrogen embrittlement susceptibility of a high strength steel X80,” Mater. Sci. Eng. A, No. 527, 7252–7260 (2010).

  18. A. J. Slifka, E. S. Drexler, R. L. Amaro, L. E. Hayden, D. G. Stalh eim, D. S. Lauria, and N. W. Hrabe, “Fatigue measurement of pipeline steels for the application of transporting gaseous hydrogen,” J. Press. Vessel Technol. Trans. ASME, No. 140 (1), 011407-1–011407-12 (2018).

  19. R. L. Amaro, R. M. White, C. P. Looney, E. S. Drexler, and A. J. Slitka, “Development of a model for hydrogen-assisted fatigue crack growth in pipeline steel,” J. Press. Vessel Technol. Trans. ASME, No 140 (2), 021403-1–021403-13 (2018).

  20. A. J. Haq, K. Muzaka, D. P. Dunne, A. Calka, and E. V. Pereloma, “Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels,” Int. J. Hydrog., No. 38 (5), 2544–2556 (2013).

  21. E. Fallahmohammadi, F. Bolzoni, G. Fumagalli, G. Re, G. Benassi, and L. Lazzari, “Hydrogen diffusion into three metallurgical microstructures of a C-Mn X65 and low alloy F22 sour service steel pipelines,” Int. J. Hydrog., 39 (25), 13300–13313 (2014).

    Article  CAS  Google Scholar 

  22. J. G. Arenas-Salcedo, J. G. Godínez-Salcedo, J. L. González-Velázquez, and J. M. Medina-Huerta, “Effect of carbon content and microstructure on the diffusion of hydrogen in low carbon steels,” Int. J. Electrochem. Sci., No. 15, 11606– 11622 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Nastich.

Additional information

Translated from Metallurg, Vol. 66, No. 6, pp. 17–27, June, 2022. Russian DOI https://doi.org/10.52351/00260827_2022_06_11.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastich, S.Y., Lopatkin, V.A. Effect of Hydrogen Gas on Mechanical Properties of Pipe Metal of Main Gas Pipelines. Metallurgist 66, 625–638 (2022). https://doi.org/10.1007/s11015-022-01369-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-022-01369-0

Keywords

Navigation