Log in

Numerical investigation of the effect of microfluidic flow parameters and physical properties on double emulsion droplet forming

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The preparation of double emulsion droplet is a significant development direction in droplet microfluidics. In this paper, we simulate the droplet formation inside a six-way type microchannel. The effects of flow rate, viscosity, and interfacial tension of microfluid on the process of droplets preparation are investigated, i.e., the forming quality of droplets under different flow parameters and physical properties of microfluid, which is of reference significance for the preparation of microdroplets such as double emulsion droplet. In this paper, it is found that when the flow rate of the outer phase increases, the area of the inner and outer droplets of double emulsion droplets decreases; when the flow rate of the middle phase increases, the area of the inner droplet decreases, while the area of the outer droplet increases; the viscosity affects the forming flow pattern, and the location where the area ratio of inner and outer droplets changes more intensely is near the flow pattern transition node; the interfacial tension has a significant influence on the forming size of droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. https://doi.org/10.1038/nature05058

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Yager P et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418. https://doi.org/10.1038/nature05064

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Jurinjak Tušek A et al (2021) The power of microsystem technology in the food industry: going small makes it better. Innov Food Sci Emerg Technol 68:102613. https://doi.org/10.1016/j.ifset.2021.102613

    Article  CAS  Google Scholar 

  4. McIlroy DA, Blaiszik BJ, Caruso MM, White SR, Moore JS, Sottos NR (2010) Microencapsulation of a reactive liquid-phase amine for self-healing epoxy composites. Macromolecules 43(4):1855–1859. https://doi.org/10.1021/ma902251n

    Article  CAS  ADS  Google Scholar 

  5. Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437(7059):648–655. https://doi.org/10.1038/nature04163

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Shah RK et al (2008) Designer emulsions using microfluidics. Mater Today 11(4):18–27. https://doi.org/10.1016/S1369-7021(08)70053-1

    Article  CAS  Google Scholar 

  7. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541. https://doi.org/10.1126/science.1109164

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Chu L-Y, Utada AS, Shah RK, Kim J-W, Weitz DA (2007) Controllable monodisperse multiple emulsions. Angew Chem Int Ed 46(47):8970–8974. https://doi.org/10.1002/anie.200701358

    Article  CAS  Google Scholar 

  9. He P, Barthès-Biesel D, Leclerc E (2010) Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems: effect of geometry. Microfluid Nanofluid 9(2–3):293–301. https://doi.org/10.1007/s10404-009-0546-y

    Article  CAS  Google Scholar 

  10. Christopher GF, Noharuddin NN, Taylor JA, Anna SL (2008) Experimental observations of the squeezing-to-drip** transition in T-shaped microfluidic junctions. Phys Rev E 78(3):036317. https://doi.org/10.1103/PhysRevE.78.036317

    Article  CAS  ADS  Google Scholar 

  11. Abate AR, Weitz DA (2009) High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small 5(18):2030–2032. https://doi.org/10.1002/smll.200900569

    Article  CAS  PubMed  Google Scholar 

  12. Abate AR, Thiele J, Weitz DA (2011) One-step formation of multiple emulsions in microfluidics. Lab Chip 11(2):253–258. https://doi.org/10.1039/C0LC00236D

    Article  CAS  PubMed  Google Scholar 

  13. Azarmanesh M, Farhadi M, Azizian P (2016) Double emulsion formation through hierarchical flow-focusing microchannel. Phys Fluids 28(3):032005. https://doi.org/10.1063/1.4944058

    Article  CAS  ADS  Google Scholar 

  14. Askari AH, Shams M, Sullivan PE (2019) Numerical simulation of double emulsion formation in cross-junctional flow-focusing microfluidic device using Lattice Boltzmann method. J Dispers Sci Technol 40(10):1451–1460. https://doi.org/10.1080/01932691.2018.1518141

    Article  CAS  Google Scholar 

  15. Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23):9905–9908. https://doi.org/10.1021/la0480336

    Article  CAS  PubMed  Google Scholar 

  16. Azarmanesh M, Farhadi M, Azizian P (2015) Simulation of the double emulsion formation through a hierarchical T-junction microchannel. Int J Numer Methods Heat Fluid Flow 25(7):1705–1717. https://doi.org/10.1108/HFF-09-2014-0294

    Article  MathSciNet  Google Scholar 

  17. Nurumbetov G, Ballard N, Bon SAF (2012) A simple microfluidic device for fabrication of double emulsion droplets and polymer microcapsules. Polym Chem 3(4):1043. https://doi.org/10.1039/c2py00605g

    Article  CAS  Google Scholar 

  18. Xu J-H, Ge X-H, Chen R, Luo G-S (2014) Microfluidic preparation and structure evolution of double emulsions with two-phase cores. RSC Adv 4(4):1900–1906. https://doi.org/10.1039/C3RA46562D

    Article  CAS  ADS  Google Scholar 

  19. Lei L, Zhang H, Bergstrom DJ, Anthony T, Song K-Y, Zhang W (2020) Experimental and simulation study of flow patterns in the combined flow focusing and T-junction device. J Micromech Microeng 30(5):055001. https://doi.org/10.1088/1361-6439/ab7787

    Article  CAS  Google Scholar 

  20. Deshpande S, Caspi Y, Meijering AEC, Dekker C (2016) Octanol-assisted liposome assembly on chip. Nat Commun 7(1):10447. https://doi.org/10.1038/ncomms10447

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Schaich M, Sobota D, Sleath H, Cama J, Keyser UF (2020) Characterization of lipid composition and diffusivity in OLA generated vesicles. Biochim Biophys Acta BBA: Biomembr 1862(9):183359. https://doi.org/10.1016/j.bbamem.2020.183359

    Article  CAS  Google Scholar 

  22. Tan S, Gao C, Liu H, Ye B, Sun D (2020) Research of double emulsion formation and shell-thickness influence factors in a novel six-way junction microfluidic device. Colloids Surf Physicochem Eng Asp 601:124917. https://doi.org/10.1016/j.colsurfa.2020.124917

    Article  CAS  Google Scholar 

  23. Jiang F et al (2019) Numerical study on the effect of temperature on droplet formation inside the microfluidic chip. J Appl Fluid Mech 12(3):831–843. https://doi.org/10.29252/jafm.12.03.29506

    Article  MathSciNet  Google Scholar 

  24. ANSYS, Inc., ANSYS fluent theory guide. 2021

  25. Roux E, Bougaran P, Dufourcq P, Couffinhal T (2020) Fluid shear stress sensing by the endothelial layer. Front Physiol 11:861. https://doi.org/10.3389/fphys.2020.00861

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S (1999) Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J Comput Phys 152(2):423–456. https://doi.org/10.1006/jcph.1998.6168

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Science and Technology Plan of Guangzhou City (Grant Nos. 202102010386, 202201020226), NSFC (Grant No. 51975135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, B., Jiang, F., Lin, H. et al. Numerical investigation of the effect of microfluidic flow parameters and physical properties on double emulsion droplet forming. Meccanica 59, 157–168 (2024). https://doi.org/10.1007/s11012-023-01723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-023-01723-9

Keywords

Navigation