Log in

Transitions between convective reaction fronts in a Poiseuille flow

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Density driven convection changes the speed and shape of autocatalytic reaction-diffusion fronts propagating in liquids. These fronts acquire different symmetries depending on domain size and density gradients. In vertical tubes, the front shape can change from flat to nonaxisymmetric, and then to axisymmetric for larger density gradients. Imposing a Poiseuille flow will affect the transition between the different types of fronts, depending on the strength and the direction of the flow, with the nonaxisymmetric state dissapearing for strong flows. In most circumstances, the speed of the front decreases for fronts propagating against the direction of the Poiseuille flow. However, in some cases an adverse Poiseuille flow increases the front speed. This phenomena takes place near a transition between different types of fronts. Tilting the tube significantly changes the front propagation, increasing to a maximum speed for angles away from the vertical direction. In this paper, we study the combined effects of convection and forced Poiseuille flow in inclined tubes, solving numerically the reaction-diffusion equations coupled to the Navier–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data generated and/or analyzed during the current study are available from corresponding authors upon reasonable request.

References

  1. Epstein IR, Pojman JA (1998) An introduction to nonlinear chemical dynamics: oscillations, waves, patterns, and chaos. Oxford University Press, Oxford

    Book  Google Scholar 

  2. Miike HMüller SC, Hess B (1989) Hydrodynamic flows traveling with chemical waves. Phys Lett A 142(1–2):25–30

    Article  Google Scholar 

  3. Pojman JA, Epstein IR, McManus TJ, Showalter K (1991) Convective effects on chemical waves. 2. Simple convection in the iodate-arsenous acid system. J Phys Chem 95(3):1299–1306

    Article  Google Scholar 

  4. Pojman JA, Nagy IP, Epstein IR (1991) Convective effects on chemical waves. 3.Multicomponent convection in the iron (II)-nitric acid system. J Phys Chem 95(3):1306–1311

    Article  Google Scholar 

  5. Böckmann M, Müller SC (2000) Growth rates of the buoyancy-driven instability of an autocatalytic reaction front in a narrow cell. Phys Rev Lett 85(12):2506

    Article  Google Scholar 

  6. Eckert K, Acker M, Tadmouri R, Pimienta V (2012) Chemo-Marangoni convection driven by an interfacial reaction: pattern formation and kinetics. Chaos 22(3):037112

    Article  Google Scholar 

  7. Hauser MJB, Simoyi RH (1994) Inhomogeneous precipitation patterns in a chemical wave. Effect of thermocapillary convection. Chem Phys Lett 227(6):593–600

    Article  Google Scholar 

  8. Horváth D, Budroni MA, Bába P, Rongy L, De Wit A, Eckert K, Hauser MJB, Tóth Á (2014) Convective dynamics of traveling autocatalytic fronts in a modulated gravity field. Phys Chem Chem Phys 16(47):26279–26287

    Article  Google Scholar 

  9. Bába P, Rongy L, De Wit A, Hauser MJB, Tóth Á, Horváth D (2018) Interaction of pure Marangoni convection with a propagating reactive interface under microgravity. Phys Rev Lett 121(2):024501

    Article  Google Scholar 

  10. De Wit A (2001) Fingering of chemical fronts in porous media. Phys Rev Lett 87(5):054502

    Article  Google Scholar 

  11. Rongy L, Goyal N, Meiburg E, De Wit A (2007) Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. J Chem Phys 127(11):114710

    Article  Google Scholar 

  12. Tiani R, De Wit A, Rongy L (2018) Surface tension-and buoyancy-driven flows across horizontally propagating chemical fronts. Adv. Colloid Interface Sci. 225:76–83

    Article  Google Scholar 

  13. D’Hernoncourt J, Merkin JH, De Wit A (2009) Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis. J. Chem. Phys. 130(11):114602

    Google Scholar 

  14. D’Hernoncourt J, Merkin JH, De Wit A (2009) Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction frontsII. Nonlinear simulations. J Chem Phys 130(11):114503

    Article  Google Scholar 

  15. Vasquez DA, Littley JM, Wilder JW, Edwards BF (1994) Convection in chemical waves. Phys Rev E 50(1):280–284

    Article  Google Scholar 

  16. Vasquez DA, Thoreson E (2002) Convection in chemical fronts with quadratic and cubic autocatalysis. Chaos 12(1):49–55

    Article  Google Scholar 

  17. Mukherjee S, Paul MR (2020) Propagating fronts in fluids with solutal feedback. Phys Rev E 101(3):032214

    Article  Google Scholar 

  18. Mukherjee S, Paul MR (2020) The fluid dynamics of propagating fronts with solutal and thermal coupling. J Fluid Mech 942:A36

    Article  MathSciNet  MATH  Google Scholar 

  19. Mahoney JR, Li J, Boyer C, Solomon T, Mitchell KA (2015) Frozen reaction fronts in steady flows: A burning-invariant-manifold perspective. Phys Rev E 92(6):063005

    Article  MathSciNet  Google Scholar 

  20. Schwartz ME, Solomon TH (2008) Chemical reaction fronts in ordered and disordered cellular flows with opposing winds. Phys Rev Lett 100(2):028302

    Article  Google Scholar 

  21. Chevalier T, Salin D, Talon L (2017) Frozen fronts selection in flow against self-sustained chemical waves. Phys Rev Fluids 2(4):043302

    Article  Google Scholar 

  22. Atis S, Saha S, Auradou H, Salin D, Talon L (2013) Autocatalytic reaction fronts inside a porous medium of glass spheres. Phys Rev Lett 110(14):148301

    Article  Google Scholar 

  23. Gueudré T, Dubey AK, Talon L, Rosso A (2014) Strong pinning of propagation fronts in adverse flow. Phys Rev E 89(4):041004

    Article  Google Scholar 

  24. Nagypal I, Bazsa G, Epstein IR (1986) Gravity-induced anisotropies in chemical waves. J AM Chem Soc 108(13):3635–3640

    Article  Google Scholar 

  25. Jarrige N, Malham IB, Martin J, Rakotomalala N, Salin D, Talon L (2010) Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells. Phys Rev E 81(6):066311

    Article  Google Scholar 

  26. Edwards BF (2002) Poiseuille advection of chemical reaction fronts. Phys Rev Lett 89(10):104501

    Article  Google Scholar 

  27. Spangler RS, Edwards BF (2003) Poiseuille advection of chemical reaction fronts: Eikonal approximation. J Chem Phys 118(13):5911–5915

    Article  Google Scholar 

  28. Leconte M, Martin J, Rakotomalala N, Salin D (2003) Pattern of reaction diffusion fronts in laminar flows. Phys Rev Lett 90(12):128302

    Article  Google Scholar 

  29. Leconte M, Martin J, Rakotomalala N, Salin D, Yortsos YC (2004) Mixing and reaction fronts in laminar flows. J Phys Chem 120(16):7314–7321

    Article  Google Scholar 

  30. Masere J, Vasquez DA, Edwards BF, Wilder JW, Showalter K (1994) Nonaxisymmetric and axisymmetric convection in propagating reaction-diffusion fronts. J Phys Chem 98(26):6505–6508

    Article  Google Scholar 

  31. Vasquez DA, Edwards BF, Wilder JW (1991) Onset of convection for autocatalytic reaction fronts: laterally bounded systems. Phys Rev A 43(12):6694

    Article  Google Scholar 

  32. Vasquez DA, Wilder JW, Edwards BF (1992) Convective instability of autocatalytic reaction fronts in vertical cylinders. Phys Fluids A Fluid Dyn 4(11):2410–2414

    Article  MATH  Google Scholar 

  33. Vasquez DA (2007) Convective chemical fronts in a Poiseuille flow. Phys Rev E 6(5):056308

    Article  Google Scholar 

  34. Fletcher CAJ (1991) Computational techniques for fluid dyanmmics. Springer, Berlin

    Book  Google Scholar 

  35. Boycott AE (1920) Sedimentation of blood corpuscles. Nature 104:532

    Article  Google Scholar 

  36. Showalter K (1994) Quadratic and cubic reaction-diffusion fronts. Nonlinear Sci Today 4(4):1–2

    MathSciNet  MATH  Google Scholar 

  37. Vasquez DA, Coroian DI (2010) Stability of convective patterns in reaction fronts: a comparison of three models. Chaos Interdiscip J Nonlinear Sci 20(3):033109

    Article  MathSciNet  Google Scholar 

  38. Vasquez DA, Wilder JW, Edwards BF (1993) Hydrodynamic instability of chemical waves. J Chem Phys 98(3):2138–2143

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the Dirección de Gestión de la Investigación (DGI 2020-1-0039) of the Pontificia Universidad Católica del Peú.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desiderio A. Vasquez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivadeneira, R., Vasquez, D.A. Transitions between convective reaction fronts in a Poiseuille flow. Meccanica 58, 699–710 (2023). https://doi.org/10.1007/s11012-023-01643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-023-01643-8

Keywords

Navigation