Log in

Secondary shape optimization of topological boundary of cold plate channels

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Secondary shape optimization for topological boundary is proposed to further improve heat dissipation performance of cold plates. Firstly, the topological boundaries obtained with topology optimization are fitted parametrically by Bezier curves. Here, considering the numerical complexity caused by Bezier curves characters, a simple process is introduced. Thereafter, three algorithms are proposed to formulate secondary shape optimization. The proposed algorithms can further qualitatively handle explicit geometry boundary through optimizing the coefficients of the established distance function or the control points of Bezier curves. The effectiveness of the proposed algorithms is subsequently verified by analyzing the 2D and 3D models given after topology optimization and the obtained results show that these approaches further provide well-performing cold plates design. These approaches provide a theoretical basis for engineering application and they are easy to be processed and implemented. The proposed approaches can be applied not only to the problem of conjugate heat transfer but also to the problems of pure heat conduction, continuum structure, even other more complicated engineering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidisc Optim 49:1–38. https://doi.org/10.1007/s00158-013-0956-z

    Article  MathSciNet  Google Scholar 

  2. Dede EM, Jaewook Lee, Tsuyoshi Nomura (2014) Multiphysics simulation electromechanical system applications and optimization. Springer, London. https://doi.org/10.1007/978-1-4471-5640-6_1

    Book  MATH  Google Scholar 

  3. Duan BY, Wang CS, Wang W (2017) Coupling modeling for functional surface of electronic equipment. Chin J Mech Eng 30:497–499. https://doi.org/10.1007/s1003

    Article  Google Scholar 

  4. Dbouk T (2017) A review about the engineering design of optimal heat transfer systems using topology optimization. Appl Therm Eng 112:841–854. https://doi.org/10.1016/j.applthermaleng.2016.10.134

    Article  Google Scholar 

  5. Bendsøe MP, Sigmund O (2003) Topology optimization—theory, methods and applications. Springer, New York

    MATH  Google Scholar 

  6. Li Q, Steven GP, **e YM, Querin OM (2004) Evolutionary topology optimization for temperature reduction of heat conducting fields. Int J Heat Mass Transf 47(23):5071–5083. https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.010

    Article  MATH  Google Scholar 

  7. Guoxian **g, Hiroshi Isakari, Matsumoto Toshiro, Takayuki Yamada, Toru Takahashi (2015) Level set-based topology optimization for 2D heat conduction problems using BEM with objective function defined on design-dependent boundary with heat transfer boundary condition. Eng Analysis Bound Elements 61:61–70. https://doi.org/10.1016/j.enganabound.2015.06.012

    Article  MathSciNet  MATH  Google Scholar 

  8. **a Q, Shi TL, **a L (2018) Topology optimization for heat conduction by combing level set method and BESO method. Int J Heat Mass Transf 127:200–209. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.036

    Article  Google Scholar 

  9. Marck G, Nemer M, Harion JL, Russeil S, Bougeard D (2012) Topology optimization using the SIMP method for multiobjective conductive problems. Numer Heat Transf Part B 61(6):439–470. https://doi.org/10.1080/10407790.2012.687979

    Article  ADS  Google Scholar 

  10. Chen YH, Zhou SW, Li Q (2010) Multiobjective topology optimization for finite periodic structures. Comput Struct 88(11–112):806–811. https://doi.org/10.1016/j.compstruc.2009.10.003

    Article  Google Scholar 

  11. Burger FH, Jaco Dirker, Meyer JP (2013) Three-dimensional conductive heat transfer topology optimisation in a cubic domain for the volume-to-surface problem. Int J Heat Mass Transf 67:214–224. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.015

    Article  Google Scholar 

  12. Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidisc Optim 50(6):1175–1196. https://doi.org/10.1007/s00158-014-1107-x

    Article  MathSciNet  Google Scholar 

  13. Jensen KE (2018) Solving 2D/3D heat conduction problems by combing topology optimization and anisotropic mesh adaptation. In: Schumacher A, Vietor T, Fiebig S, Bletzinger KU, Maute K (eds) Advances in structural and multidisciplinary optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_92

    Chapter  Google Scholar 

  14. Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of the COMSOL users conference

  15. Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233. https://doi.org/10.1007/s12206-010-0328-1

    Article  Google Scholar 

  16. Yoon GH (2012) Topological layout design of electro-fluid-thermal-compliant actuator. Comput Methods Appl Mech Eng 2019–212(1):28–44. https://doi.org/10.1016/j.cma.2011.11.005

    Article  ADS  Google Scholar 

  17. Koga AA, Lopes ECC, Nova HFV, Lima CR, Silva ECN (2013) Development of heat sink device by using topology optimization. Int J Heat Mass Transf 64:759–772. https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.007

    Article  Google Scholar 

  18. Qian SH, Wang W, Ge C, Lou S, Miao E, Tang B (2018) Topology optimization of fluid flow channel in cold plate for active phased array antenna. Struct Multidisc Optim 57(6):2223–2232. https://doi.org/10.1007/s0015

    Article  MathSciNet  Google Scholar 

  19. Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid-thermal interaction problems under constant input power. Struct Multidisc Optim 47:571–581. https://doi.org/10.1007/s00158-013-0887-8

    Article  MATH  Google Scholar 

  20. Yaji K, Yamada T, Kubo S, Izui K, Nishiwaki S (2015) A topology optimization method for a coupled thermal fluid problem using level set boundary expressions. Int J Heat Mass Transf 81:878–888. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.005

    Article  Google Scholar 

  21. Sun C, Lewpiriyawong N, Khoo KL, Zeng S, Lee PS (2018) Thermal enhancement of fin and tube heat e-xchanger with guiding channels and topology optimisation. Int J Heat Mass Transf 127:1001–1013. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.093

    Article  Google Scholar 

  22. Zhao X, Zhou M, Sigmund O, Andreasen CS (2018) A “poor man’s approach” to topology optimization of cooling channels based on a Darcy flow model. Int J Heat Mass Transf 116:1108–1123. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.090

    Article  Google Scholar 

  23. Lv Y, Liu S (2018) Topology optimization and heat dissipation performance analysis of a mirco-channel heat sink. Meccanica 53:3693–3708. https://doi.org/10.1007/s11012-018-0918-z

    Article  MathSciNet  Google Scholar 

  24. Haertel JHK, Engelbrecht K, Lazarov BS, Sigmund O (2018) Topology optimization of a pseudo 3D thermofluid heat sink model. Int J Heat Mass Transf 121:1073–1088. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.078

    Article  Google Scholar 

  25. Dilgen SB, Dilgen CB, Fuhrman DR, Sigmund O, Lazarov BS (2018) Density based topology optimization of turbulent flow heat transfer systems. Struct Multidisc Optim 57(5):1905–1918. https://doi.org/10.1007/s0015

    Article  MathSciNet  Google Scholar 

  26. Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Transf 100:876–891. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.013

    Article  Google Scholar 

  27. Alexandersen J, Sigmund O, Meyer KE, Lazarov BS (2018) Design of passive coolers for light-emitting di-ode lamps using topology optimisation. Int J Heat Mass Transf 122:138–149. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.103

    Article  Google Scholar 

  28. Pizzolato A, Sharma A, Maute K, Sciacovelli A, Verda V (2017) Topology optimization for heat transfer enhancement in latent heat thermal energy storage. Int J Heat Mass Transf 113:875–888. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.098

    Article  Google Scholar 

  29. Kreissl S, **en G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253. https://doi.org/10.1002/nme.3151

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 51490661, 51490660. The authors would like to thank Dr. Shuo Zhang, Dr. Chaoliu Ge, and Dr. Shunxi Lou for their helpful insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **wei Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Tian, X., Qian, S. et al. Secondary shape optimization of topological boundary of cold plate channels. Meccanica 55, 19–33 (2020). https://doi.org/10.1007/s11012-019-01108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01108-x

Keywords

Navigation