Log in

Protein networking: nicotinic acetylcholine receptors and their protein–protein-associations

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

APC:

Adenomatous polyposis coli

BiP:

Binding immunoglobulin protein

COG:

Conserved oligomeric Golgi

COP:

Coat protein complex

DGC:

Dystrophin-associated glycoprotein complex

ER:

Endoplasmic reticulum

ERAD:

ER-associated degradation

ERES:

ER entry site

ERGIC:

ER-Golgi intermediate compartment

GlcNAc:

N-acetylglucosamine

GRASP:

Golgi reassembly stacking protein

MAPK:

Mitogen-activated protein kinase

MASC:

Muscle accessory-specific component

MuSK:

Muscle-specific kinase

MVB:

Multivesicular body

nAChR:

Nicotinic acetylcholine receptors

rapsyn:

Receptor-associated protein at synapse

RATL:

Rapsyn-associated transmembrane linker

RER1:

Receptor for ER 1

TANGO:

Transport and Golgi organization

TGN:

Trans-Golgi network

UGGT1:

UDP-glucose: glycoprotein glucosyltransferase-1

VVA B4 :

Vicia villosa agglutinin B4

References

  1. Wanamaker CP, Christianson JC, Green WN (2003) Regulation of nicotinic acetylcholine receptor assembly. Ann N Y Acad Sci 998:66–80

    Article  CAS  PubMed  Google Scholar 

  2. Millar NS, Harkness PC (2008) Assembly and trafficking of nicotinic acetylcholine receptors (Review). Mol Membr Biol 25:279–292. https://doi.org/10.1080/09687680802035675

    Article  CAS  PubMed  Google Scholar 

  3. Albuquerque EX, Pereira EFR, Alkondon M et al (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120. https://doi.org/10.1152/physrev.00015.2008

    Article  CAS  PubMed  Google Scholar 

  4. Jones AK, Buckingham SD, Sattelle DB (2010) Proteins interacting with nicotinic acetylcholine receptors: expanding functional and therapeutic horizons. Trends Pharmacol Sci 31:455–462. https://doi.org/10.1016/j.tips.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  5. Millar NS, Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56:237–246. https://doi.org/10.1016/j.neuropharm.2008.07.041

    Article  CAS  PubMed  Google Scholar 

  6. Bermúdez V, Antollini SS, Fernández N et al (2010) Partition profile of the nicotinic acetylcholine receptor in lipid domains upon reconstitution. J Lipid Res 51:2629–2641. https://doi.org/10.1194/jlr.M005132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mei L, **ong WC (2003) Two birds with one stone: a novel motif for ACh receptor assembly quality control. Trends Neurosci 26:176–178. https://doi.org/10.1016/S0166-2236(03)00066-3

    Article  CAS  Google Scholar 

  8. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol 346:967–989. https://doi.org/10.1016/j.jmb.2004.12.031

    Article  CAS  PubMed  Google Scholar 

  9. Mishina M, Takai T, Imoto K et al (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–411

    Article  CAS  PubMed  Google Scholar 

  10. Fagerlund MJ, Dabrowski M, Eriksson LI (2009) Pharmacological characteristics of the inhibition of nondepolarizing neuromuscular blocking agents at human adult muscle nicotinic acetylcholine receptor. J Am Soc Anesthesiol 110:1244–1252

    Article  CAS  Google Scholar 

  11. Green WN, Claudio T (1993) Acetylcholine receptor assembly: subunit folding and oligomerization occur sequentially. Cell 74:57–69

    Article  CAS  PubMed  Google Scholar 

  12. Forsayeth JR, Franco A, Rossi AB et al (1990) Expression of functional mouse muscle acetylcholine receptors in Chinese hamster ovary cells. J Neurosci 10:2771–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gu Y, Franco A Jr, Gardner PD et al (1990) Properties of embryonic and adult muscle acetylcholine receptors transiently expressed in COS cells. Neuron 5:147–157

    Article  CAS  PubMed  Google Scholar 

  14. Rudell JC, Borges LS, Rudell JB et al (2014) Determinants in the β and δ subunit cytoplasmic loop regulate Golgi trafficking and surface expression of the muscle acetylcholine receptor. J Biol Chem 289:203–214. https://doi.org/10.1074/jbc.M113.502328

    Article  CAS  PubMed  Google Scholar 

  15. Brockmöller S, Seeger T, Worek F et al (2023) Recombinant cellular model system for human muscle-type nicotinic acetylcholine receptor α12β1δε. Cell Stress Chaperones 28:1013–1025. https://doi.org/10.1007/s12192-023-01395-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154:1558–1571. https://doi.org/10.1038/bjp.2008.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karlin A, Akabas MH (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15:1231–1244. https://doi.org/10.1016/0896-6273(95)90004-7

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki S, Utsugisawa K, Nagane Y et al (2011) Three types of striational antibodies in myasthenia gravis. Autoimmune Dis 2011:740583. https://doi.org/10.4061/2011/740583

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lotti M (2010) Clinical toxicology of anticholinesterase agents in humans. Hayes’ handbook of pesticide toxicology. Academic Press, pp 1543–1589

    Chapter  Google Scholar 

  20. Costa LG (2006) Current issues in organophosphate toxicology. Clin Chim Acta 366:1–13. https://doi.org/10.1016/j.cca.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  21. Singh B, Kaur J, Singh K (2014) Microbial degradation of an organophosphate pesticide, malathion. Crit Rev Microbiol 40:146–154. https://doi.org/10.3109/1040841X.2013.763222

    Article  CAS  PubMed  Google Scholar 

  22. Bey T, Walter FG (2002) Sarin, Soman, Tabun und VX. Notfall & Rettungsmedizin 5:462–468. https://doi.org/10.1007/s10049-002-0462-0

    Article  Google Scholar 

  23. Morris CM, Savy C, Judge SJ et al (2014) Acute toxicity of organophosphorus compounds. Basic clin toxicol organophosphorus compd 27:45–78. https://doi.org/10.1007/978-1-4471-5625-3_3

    Article  Google Scholar 

  24. Paz ML, Barrantes FJ (2019) Autoimmune attack of the neuromuscular junction in myasthenia gravis: nicotinic acetylcholine receptors and other targets. ACS Chem Neurosci 10:2186–2194. https://doi.org/10.1021/acschemneuro.9b00041

    Article  CAS  PubMed  Google Scholar 

  25. daCosta CJB, Baenziger JE (2009) A lipid-dependent uncoupled conformation of the acetylcholine receptor. J Biol Chem 284:17819–17825. https://doi.org/10.1074/jbc.M900030200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baenziger JE, daCosta CJB (2013) Molecular mechanisms of acetylcholine receptor-lipid interactions: from model membranes to human biology. Biophys Rev 5:1–9. https://doi.org/10.1007/s12551-012-0078-7

    Article  CAS  PubMed  Google Scholar 

  27. Changeux J-P (2018) The nicotinic acetylcholine receptor: a typical “allosteric machine.” Philos Trans R Soc Lond B Biol Sci 373:20170174. https://doi.org/10.1098/rstb.2017.0174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gharpure A, Noviello CM, Hibbs RE (2020) Progress in nicotinic receptor structural biology. Neuropharmacology 171:108086. https://doi.org/10.1016/j.neuropharm.2020.108086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Delgado-Vélez M, Quesada O, Villalobos-Santos JC et al (2021) Pursuing high-resolution structures of nicotinic acetylcholine receptors: lessons learned from five decades. Molecules 26:5753. https://doi.org/10.3390/molecules26195753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Green WN, Wanamaker CP (1998) Formation of the nicotinic acetylcholine receptor binding sites. J Neurosci 18:5555–5564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Keller SH, Lindstrom J, Taylor P (1996) Involvement of the chaperone protein calnexin and the acetylcholine receptor β-subunit in the assembly and cell surface expression of the receptor. J Biol Chem 271:22871–22877

    Article  CAS  PubMed  Google Scholar 

  32. Keller SH, Lindstrom J, Taylor P (1998) Inhibition of glucose trimming with castanospermine reduces calnexin association and promotes proteasome degradation of the alpha-subunit of the nicotinic acetylcholine receptor. J Biol Chem 273:17064–17072. https://doi.org/10.1074/jbc.273.27.17064

    Article  CAS  PubMed  Google Scholar 

  33. Keller SH, Taylor P (1999) Determinants responsible for assembly of the nicotinic acetylcholine receptor. J Gen Physiol 113:171–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marinko JT, Huang H, Penn WD et al (2019) Folding and misfolding of human membrane proteins in health and disease: from single molecules to cellular proteostasis. Chem Rev 119:5537–5606. https://doi.org/10.1021/acs.chemrev.8b00532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Merulla J, Soldà T, Molinari M (2015) A novel UGGT1 and p97-dependent checkpoint for native ectodomains with ionizable intramembrane residue. Mol Biol Cell 26:1532–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kamiya Y, Kato K (2006) Sugar recognition by intracellular lectins that determine the fates of glycoproteins. Trends Glycosci Glycotechnol 18:231–244

    Article  CAS  Google Scholar 

  37. Wanamaker CP, Green WN (2007) Endoplasmic reticulum chaperones stabilize nicotinic receptor subunits and regulate receptor assembly. J Biol Chem 282:31113–31123. https://doi.org/10.1074/jbc.M705369200

    Article  CAS  PubMed  Google Scholar 

  38. Oliver JD, Roderick HL, Llewellyn DH et al (1999) ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 10:2573–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trombetta ES, Helenius A (1998) Lectins as chaperones in glycoprotein folding. Curr Opin Struct Biol 8:587–592

    Article  CAS  PubMed  Google Scholar 

  40. Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888

    Article  CAS  PubMed  Google Scholar 

  41. Ellgaard L, Frickel EM (2003) Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding. Cell Biochem Biophys 39:223–247

    Article  CAS  PubMed  Google Scholar 

  42. Christianson JC, Green WN (2004) Regulation of nicotinic receptor expression by the ubiquitin–proteasome system. EMBO J 23:4156–4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brodsky JL, McCracken AA (1999) ER protein quality control and proteasome-mediated protein degradation. In seminars in cell & developmental biology. Academic Press 10:507–513

    CAS  Google Scholar 

  44. Wanamaker CP, Green WN (2005) N-linked glycosylation is required for nicotinic receptor assembly but not for subunit associations with calnexin. J Biol Chem 280:33800–33810. https://doi.org/10.1074/jbc.M501813200

    Article  CAS  PubMed  Google Scholar 

  45. Gehle VM, Walcott EC, Nishizaki T et al (1997) N-glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors. Mol Brain Res 45:219–229

    Article  CAS  PubMed  Google Scholar 

  46. Mitra M, Wanamaker CP, Green WN (2001) Rearrangement of nicotinic receptor α subunits during formation of the ligand binding sites. J Neurosci 21:3000–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lièvremont JP, Rizzuto R, Hendershot L et al (1997) BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem 272:30873–30879. https://doi.org/10.1074/jbc.272.49.30873

    Article  PubMed  Google Scholar 

  48. Forsayeth JR, Gu Y, Hall ZW (1992) BiP forms stable complexes with unassembled subunits of the acetylcholine receptor in transfected COS cells and in C2 muscle cells. J Cell Biol 117:841–847

    Article  CAS  PubMed  Google Scholar 

  49. Blount P, Merlie JP (1991) BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor. J Cell Biol 113:1125–1132. https://doi.org/10.1083/jcb.113.5.1125

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Lee J, Liem D et al (2017) HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 618:14–23. https://doi.org/10.1016/j.gene.2017.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Szabo A, Langer T, Schröder H et al (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci 91:10345–10349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Green WN (1999) Ion channel assembly: creating structures that function. J Gen Physiol 113:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramanathan VK, Hall ZW (1999) Altered glycosylation sites of the delta subunit of the acetylcholine receptor (AChR) reduce alpha delta association and receptor assembly. J Biol Chem 274:20513–20520. https://doi.org/10.1074/jbc.274.29.20513

    Article  CAS  PubMed  Google Scholar 

  54. Rickert KW, Imperiali B (1995) Analysis of the conserved glycosylation site in the nicotinic acetylcholine receptor: potential roles in complex assembly. Chem Biol 2:751–759

    Article  CAS  PubMed  Google Scholar 

  55. Green WN, Wanamaker CP (1997) The role of the cystine loop in acetylcholine receptor assembly. J Biol Chem 272:20945–20953. https://doi.org/10.1074/jbc.272.33.20945

    Article  CAS  PubMed  Google Scholar 

  56. Karlin A, Cox RN, Dipaola M et al (1986) Functional domains of the nicotinic acetylcholine receptor. Ann N Y Acad Sci 463:53–69

    Article  CAS  PubMed  Google Scholar 

  57. Blount P, Merlie JP (1990) Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly. J Cell Biol 111:2613–2622

    Article  CAS  PubMed  Google Scholar 

  58. Merlie JP, Lindstrom J (1983) Assembly in vivo of mouse muscle acetylcholine receptor: identification of an α subunit species that may be an assembly intermediate. Cell 34:747–757

    Article  CAS  PubMed  Google Scholar 

  59. Otero JH, Lizák B, Hendershot LM (2010) Life and death of a BiP substrate. Semin Cell Dev Biol 21:472–478. https://doi.org/10.1016/j.semcdb.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  60. McCaffrey K, Braakman I (2016) Protein quality control at the endoplasmic reticulum. Essays Biochem 60:227–235. https://doi.org/10.1042/EBC20160003

    Article  PubMed  Google Scholar 

  61. Behnke J, Feige MJ, Hendershot LM (2015) BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 427:1589–1608. https://doi.org/10.1016/j.jmb.2015.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Melnyk A, Rieger H, Zimmermann R (2015) Co-chaperones of the mammalian endoplasmic reticulum. Subcell Biochem 78:179–200. https://doi.org/10.1007/978-3-319-11731-7_9

    Article  CAS  PubMed  Google Scholar 

  63. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  64. Rao RV, Peel A, Logvinova A et al (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514:122–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reddy RK, Mao C, Baumeister P et al (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278:20915–20924. https://doi.org/10.1074/jbc.M212328200

    Article  CAS  PubMed  Google Scholar 

  66. Wang J, Pareja KA, Kaiser CA et al (2014) Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress. Elife 3:e03496. https://doi.org/10.7554/eLife.03496.001

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang JM, Zhang L, Yao Y et al (2002) A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors. Nat Neurosci 5:963–970. https://doi.org/10.1038/nn918

    Article  CAS  PubMed  Google Scholar 

  68. Malkus P, Jiang F, Schekman R (2002) Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. J Cell Biol 159:915–921. https://doi.org/10.1083/jcb.200208074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Farhan H, Weiss M, Tani K et al (2008) Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. The EMBO journal, 27(15), 2043–2054. EMBO J 27:2043–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Farhan H, Wendeler MW, Mitrovic S et al (2010) MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening. J Cell Biol 189:997–1011. https://doi.org/10.1083/jcb.200912082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Phuyal S, Djaerff E, Le Roux AL et al (2022) Mechanical strain stimulates COPII-dependent secretory trafficking via Rac1. EMBO J 41(18):e110596. https://doi.org/10.15252/embj.2022110596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fisher P, Thomas-Oates J, Wood AJ et al (2019) The N-Glycosylation processing potential of the mammalian Golgi apparatus. Front Cell Dev Biol 7:157. https://doi.org/10.3389/fcell.2019.00157

    Article  PubMed  PubMed Central  Google Scholar 

  73. Russell C, Stagg SM (2010) New insights into the structural mechanisms of the COPII coat. Traffic 11:303–310. https://doi.org/10.1111/j.1600-0854.2009.01026.x

    Article  CAS  PubMed  Google Scholar 

  74. Zeuschner D, Geerts WJC, van Donselaar E et al (2006) Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 8:377–383. https://doi.org/10.1038/ncb1371

    Article  CAS  PubMed  Google Scholar 

  75. Maeda M, Katada T, Saito K (2017) TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J Cell Biol 216:1731–1743. https://doi.org/10.1083/jcb.201703084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tanabe T, Maeda M, Saito K et al (2016) Dual function of cTAGE5 in collagen export from the endoplasmic reticulum. Mol Biol Cell 27:2008–2013

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hsu VW, Prekeris R (2010) Transport at the recycling endosome. Curr Opin Cell Biol 22:528–534. https://doi.org/10.1016/j.ceb.2010.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Khoriaty R, Vasievich MP, Ginsburg D (2012) The COPII pathway and hematologic disease. Blood 120:31–38. https://doi.org/10.1182/blood-2012-01-292086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Saito K, Chen M, Bard F et al (2009) TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136:891–902. https://doi.org/10.1016/j.cell.2008.12.025

    Article  CAS  PubMed  Google Scholar 

  80. Miller EA, Beilharz TH, Malkus PN et al (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114:497–509. https://doi.org/10.1016/s0092-8674(03)00609-3

    Article  CAS  PubMed  Google Scholar 

  81. Wendeler MW, Paccaud JP, Hauri HP (2007) Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum. EMBO Rep 8:258–264. https://doi.org/10.1038/sj.embor.7400893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ma W, Goldberg J (2016) TANGO1/cTAGE5 receptor as a polyvalent template for assembly of large COPII coats. Proc Natl Acad Sci U S A 113:10061–10066. https://doi.org/10.1073/pnas.1605916113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Raote I, Ortega-Bellido M, Santos AJ et al (2018) TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. Elife 7:e32723. https://doi.org/10.7554/eLife.32723.001

    Article  PubMed  PubMed Central  Google Scholar 

  84. Payapilly A, Malliri A (2018) Compartmentalisation of RAC1 signalling. Curr Opin Cell Biol 54:50–56. https://doi.org/10.1016/j.ceb.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  85. Phuyal S, Farhan H (2021) Want to leave the ER? We offer vesicles, tubules, and tunnels. J Cell Biol 220:e202104062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu D, Hay JC (2004) Reconstitution of COPII vesicle fusion to generate a pre-Golgi intermediate compartment. J Cell Biol 167:997–1003. https://doi.org/10.1083/jcb.200408135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Raote I, Malhotra V (2019) Protein transport by vesicles and tunnels. J Cell Biol 218:737–739. https://doi.org/10.1083/jcb.201811073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hauri HP, Kappeler F, Andersson H et al (2000) ERGIC-53 and traffic in the secretory pathway. J Cell Sci 113:587–596

    Article  CAS  PubMed  Google Scholar 

  89. Zanetti G, Pahuja KB, Studer S et al (2011) COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14:20–28. https://doi.org/10.1038/ncb2390

    Article  CAS  PubMed  Google Scholar 

  90. Kamiya Y, Kamiya D, Yamamoto K et al (2008) Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. J Biol Chem 283:1857–1861. https://doi.org/10.1074/jbc.M709384200

    Article  CAS  PubMed  Google Scholar 

  91. Cortini M, Sitia R (2010) ERp44 and ERGIC-53 synergize in coupling efficiency and fidelity of IgM polymerization and secretion. Traffic 11:651–659. https://doi.org/10.1111/j.1600-0854.2010.01043.x

    Article  CAS  PubMed  Google Scholar 

  92. Tempio T, Orsi A, Sicari D et al (2021) A virtuous cycle operated by ERp44 and ERGIC-53 guarantees proteostasis in the early secretory compartment. IScience 24:102244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fu YL, Zhang B, Mu TW (2019) LMAN1 (ERGIC-53) promotes trafficking of neuroreceptors. Biochem Biophys Res Commun 511:356–362. https://doi.org/10.1016/j.bbrc.2019.02.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Andersson H, Kappeler F, Hauri HP (1999) Protein targeting to endoplasmic reticulum by dilysine signals involves direct retention in addition to retrieval. J Biol Chem 274:15080–15084. https://doi.org/10.1074/jbc.274.21.15080

    Article  CAS  PubMed  Google Scholar 

  95. Hara-Kuge S, Kuge O, Orci L et al (1994) En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles. J Cell Biol 124:883–892

    Article  CAS  PubMed  Google Scholar 

  96. Waters MG, Serafini T, Rothman JE (1991) “Coatomer”: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349:248–251

    Article  CAS  PubMed  Google Scholar 

  97. Eugster A, Frigerio G, Dale M et al (2000) COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J 19:3905–3917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gomez-Navarro N, Miller E (2016) Protein sorting at the ER-Golgi interface. J Cell Biol 215:769–778. https://doi.org/10.1083/jcb.201610031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jackson LP, Lewis M, Kent HM et al (2012) Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev Cell 23:1255–1262. https://doi.org/10.1016/j.devcel.2012.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Donaldson JG, Cassel D, Kahn RA et al (1992) ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc Natl Acad Sci 89:6408–6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Donaldson JG, Finazzi D, Klausner RD (1992) Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360:350–352

    Article  CAS  PubMed  Google Scholar 

  102. Helms JB, Rothman JE (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360:352–354

    Article  CAS  PubMed  Google Scholar 

  103. Tanigawa G, Orci L, Amherdt M et al (1993) Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J Cell Biol 123:1365–1371

    Article  CAS  PubMed  Google Scholar 

  104. Hsu VW, Yang J-S (2009) Mechanisms of COPI vesicle formation. FEBS Lett 583:3758–3763. https://doi.org/10.1016/j.febslet.2009.10.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Semenza JC, Hardwick KG, Dean N et al (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61:1349–1357

    Article  CAS  PubMed  Google Scholar 

  106. Scheel AA, Pelham HR (1996) Purification and characterization of the human KDEL receptor. Biochemistry 35(31):10203–10209. https://doi.org/10.1021/bi960807x

    Article  CAS  PubMed  Google Scholar 

  107. Majoul I, Straub M, Hell SW et al (2001) KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev Cell 1:139–153

    Article  CAS  PubMed  Google Scholar 

  108. Valkova C, Albrizio M, Röder IV et al (2011) Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled alpha-subunits. Proc Natl Acad Sci U S A 108:621–625. https://doi.org/10.1073/pnas.1001624108

    Article  PubMed  Google Scholar 

  109. Annaert W, Kaether C (2020) Bring it back, bring it back, don’t take it away from me—the sorting receptor RER1. J Cell Sci. https://doi.org/10.1242/jcs.231423

    Article  PubMed  Google Scholar 

  110. Sato K, Sato M, Nakano A (1997) Rer1p as common machinery for the endoplasmic reticulum localization of membrane proteins. Proc Natl Acad Sci 94:9693–9698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sato K, Sato M, Nakano A (2003) Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes. Mol Biol Cell 14:3605–3616. https://doi.org/10.1091/mbc.e02-12-0777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang X, Wang Y (2016) Glycosylation quality control by the Golgi structure. J Mol Biol 428:3183–3193. https://doi.org/10.1016/j.jmb.2016.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Stanley P (2011) Golgi glycosylation. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a005199

    Article  PubMed  PubMed Central  Google Scholar 

  114. Centonze FG, Reiterer V, Nalbach K et al (2019) LTK is an ER-resident receptor tyrosine kinase that regulates secretion. J Cell Biol 218:2470–2480. https://doi.org/10.1083/jcb.201903068

    Article  PubMed  PubMed Central  Google Scholar 

  115. Stanley P, Taniguchi N, Aebi M (2015) Essentials of glycobiology: N-glycans. Cold Spring Harbor, New York

    Google Scholar 

  116. North SJ, Huang HH, Sundaram S et al (2010) Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 285:5759–5775. https://doi.org/10.1074/jbc.M109.068353

    Article  CAS  PubMed  Google Scholar 

  117. Willett R, Ungar D, Lupashin V (2013) The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 140:271–283. https://doi.org/10.1007/s00418-013-1117-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barr FA, Short B (2003) Golgins in the structure and dynamics of the Golgi apparatus. Curr Opin Cell Biol 15:405–413. https://doi.org/10.1016/s0955-0674(03)00054-1

    Article  CAS  PubMed  Google Scholar 

  119. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166

    Article  CAS  PubMed  Google Scholar 

  120. Allan BB, Moyer BD, Balch WE (2000) Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289:444–448

    Article  CAS  PubMed  Google Scholar 

  121. Barr FA, Puype M, Vandekerckhove J et al (1997) GRASP65, a protein involved in the stacking of Golgi cisternae. Cell 91:253–262

    Article  CAS  PubMed  Google Scholar 

  122. Nakamura N, Lowe M, Levine TP et al (1997) The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89:445–455

    Article  CAS  PubMed  Google Scholar 

  123. Moyer BD, Allan BB, Balch WE (2001) Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis–Golgi tethering. Traffic 2:268–276. https://doi.org/10.1034/j.1600-0854.2001.1o007.x

    Article  CAS  PubMed  Google Scholar 

  124. Weide T, Bayer M, Köster M et al (2001) The Golgi matrix protein GM130: a specific interacting partner of the small GTPase rab1b. EMBO Rep 2:336–341. https://doi.org/10.1093/embo-reports/kve065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Miller VJ, Sharma P, Kudlyk TA et al (2013) Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J Biol Chem 288:4229–4240. https://doi.org/10.1074/jbc.M112.426767

    Article  CAS  PubMed  Google Scholar 

  126. Rivinoja A, Pujol FM, Hassinen A et al (2012) Golgi pH, its regulation and roles in human disease. Ann Med 44:542–554. https://doi.org/10.3109/07853890.2011.579150

    Article  CAS  PubMed  Google Scholar 

  127. Klute MJ, Melançon P, Dacks JB (2011) Evolution and diversity of the Golgi. Cold Spring Harb Perspect Biol 3:a007849. https://doi.org/10.1101/cshperspect.a007849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. **ang Y, Zhang X, Nix DB et al (2013) Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65. Nat Commun 4:1659. https://doi.org/10.1038/ncomms2669

    Article  CAS  PubMed  Google Scholar 

  129. Farquhar MG, Palade GE (1998) The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol 8:2–10. https://doi.org/10.1016/s0962-8924(97)01187-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shorter J, Watson R, Giannakou ME et al (1999) GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J 18:4949–4960. https://doi.org/10.1093/emboj/18.18.4949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang Y, Seemann J, Pypaert M et al (2003) A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J 22:3279–3290. https://doi.org/10.1093/emboj/cdg317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tang D, Wang Y (2013) Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol 23:296–304. https://doi.org/10.1016/j.tcb.2013.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. **ang Y, Wang Y (2010) GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J Cell Biol 188:237–251. https://doi.org/10.1083/jcb.200907132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Short B, Preisinger C, Körner R et al (2001) A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J Cell Biol 155:877–883. https://doi.org/10.1083/jcb.200108079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nilsson T, Lucocq JM, Mackay D et al (1991) The membrane spanning domain of beta-1,4-galactosyltransferase specifies trans Golgi localization. EMBO J 10:3567–3575. https://doi.org/10.1002/j.1460-2075.1991.tb04923.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nilsson T, Hoe MH, Slusarewicz P et al (1994) Kin recognition between medial Golgi enzymes in HeLa cells. EMBO J 13:562–574. https://doi.org/10.1002/j.1460-2075.1994.tb06294.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rabouille C, Hui N, Hunte F et al (1995) Map** the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 108:1617–1627

    Article  CAS  PubMed  Google Scholar 

  138. Berninsone PM, Hirschberg CB (2000) Nucleotide sugar transporters of the Golgi apparatus. Curr Opin Struct Biol 10:542–547

    Article  CAS  PubMed  Google Scholar 

  139. Shoji H, Takahashi N, Nomoto H et al (1992) Detailed structural analysis of asparagine-linked oligosaccharides of the nicotinic acetylcholine receptor from Torpedo californica. Eur J Biochem 207:631–641. https://doi.org/10.1111/j.1432-1033.1992.tb17090.x

    Article  CAS  PubMed  Google Scholar 

  140. Poulter L, Burlingame AL (1990) Desorption mass spectrometry of oligosaccharides coupled with hydrophobic chromophores. Methods in enzymology, vol 193. Academic Press, pp 661–689

    Google Scholar 

  141. Rudell JC, Borges LS, Yarov-Yarovoy V et al (2020) The MX-Helix of muscle nAChR subunits regulates receptor assembly and surface trafficking. Front Mol Neurosci 13:48. https://doi.org/10.3389/fnmol.2020.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Takacs Z, Wilhelmsen KC, Sorota S (2001) Snake α-neurotoxin binding site on the Egyptian cobra (Naja haje) nicotinic acetylcholine receptor is conserved. Mol Biol Evol 18:1800–1809

    Article  CAS  PubMed  Google Scholar 

  143. Tansky MF, Pothoulakis C, Leeman SE (2007) Functional consequences of alteration of N-linked glycosylation sites on the neurokinin 1 receptor. Proc Natl Acad Sci 104:10691–10696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Console L, Scalise M, Tarmakova Z et al (2015) N-linked glycosylation of human SLC1A5 (ASCT2) transporter is critical for trafficking to membrane. Biochim Biophys Acta 1853:1636–1645. https://doi.org/10.1016/j.bbamcr.2015.03.017

    Article  CAS  PubMed  Google Scholar 

  145. Govind AP, Jeyifous O, Russell TA et al (2021) Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome. Elife 10:e68910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang HJ, Zammit M, Kao C-M et al (2023) Trap** of nicotinic acetylcholine receptor ligands assayed by in vitro cellular studies and in vivo PET imaging. J Neurosci 43:2–13. https://doi.org/10.1523/JNEUROSCI.2484-21.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Valenzuela A, Meservey L, Nguyen H et al (2020) Golgi outposts nucleate microtubules in cells with specialized shapes. Trends Cell Biol 30:792–804. https://doi.org/10.1016/j.tcb.2020.07.004

    Article  CAS  PubMed  Google Scholar 

  148. Nilsson T, Au CE, Bergeron JJM (2009) Sorting out glycosylation enzymes in the Golgi apparatus. FEBS Lett 583:3764–3769. https://doi.org/10.1016/j.febslet.2009.10.064

    Article  CAS  PubMed  Google Scholar 

  149. Ungar D (2009) Golgi linked protein glycosylation and associated diseases. Semin Cell Dev Biol 20:762–769. https://doi.org/10.1016/j.semcdb.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  150. Smith RD, Lupashin VV (2008) Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr Res 343:2024–2031. https://doi.org/10.1016/j.carres.2008.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ungar D, Oka T, Brittle EE et al (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157:405–415. https://doi.org/10.1083/jcb.200202016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ungar D, Oka T, Vasile E et al (2005) Subunit architecture of the conserved oligomeric Golgi complex. J Biol Chem 280:32729–32735. https://doi.org/10.1074/jbc.M504590200

    Article  CAS  PubMed  Google Scholar 

  153. Sohda M, Misumi Y, Yoshimura SI et al (2007) The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity. Traffic 8:270–284. https://doi.org/10.1111/j.1600-0854.2006.00530.x

    Article  CAS  PubMed  Google Scholar 

  154. Schapiro FB, Grinstein S (2000) Determinants of the pH of the Golgi complex. J Biol Chem 275:21025–21032. https://doi.org/10.1074/jbc.M002386200

    Article  CAS  PubMed  Google Scholar 

  155. Marchand S, Bignami F, Stetzkowski-Marden F et al (2000) The myristoylated protein rapsyn is cotargeted with the nicotinic acetylcholine receptor to the postsynaptic membrane via the exocytic pathway. J Neurosci 20:521–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Marchand S, Devillers-Thiéry A, Pons S et al (2002) Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J Neurosci 22:8891–8901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    Article  CAS  PubMed  Google Scholar 

  158. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805

    Article  CAS  PubMed  Google Scholar 

  159. Vallés AS, Barrantes FJ (2021) Dysregulation of neuronal nicotinic acetylcholine receptor-cholesterol crosstalk in autism spectrum disorder. Front Mol Neurosci 14:744597. https://doi.org/10.3389/fnmol.2021.744597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Barrantes FJ (2023) Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol Res 190:106729. https://doi.org/10.1016/j.phrs.2023.106729

    Article  CAS  PubMed  Google Scholar 

  161. Barrantes FJ (2023) Modulation of a rapid neurotransmitter receptor-ion channel by membrane lipids. Front Cell Dev Biol 11:1328875. https://doi.org/10.3389/fcell.2023.1328875

    Article  PubMed  Google Scholar 

  162. Meier T, Masciulli F, Moore C et al (1998) Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins. J Cell Biol 141:715–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sandrock AW Jr, Dryer SE, Rosen KM et al (1997) Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 276:599–603

    Article  PubMed  Google Scholar 

  164. Denzer AJ, Schulthess T, Fauser C et al (1998) Electron microscopic structure of agrin and map** of its binding site in laminin-1. EMBO J 17:335–343. https://doi.org/10.1093/emboj/17.2.335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jo SA, Burden SJ (1992) Synaptic basal lamina contains a signal for synapse-specific transcription. Development 115:673–680

    Article  CAS  PubMed  Google Scholar 

  166. Jo SA, Zhu X, Marchionni MA et al (1995) Neuregulins are concentrated at nerve-muscle synapses and activate ACh–receptor gene expression. Nature 373:158–161

    Article  CAS  PubMed  Google Scholar 

  167. Huh KH, Fuhrer C (2002) Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses. Mol Neurobiol 25:79–112

    Article  CAS  PubMed  Google Scholar 

  168. **ng G, **g H, Zhang L et al (2019) A mechanism in agrin signaling revealed by a prevalent Rapsyn mutation in congenital myasthenic syndrome. Elife 8:e49180. https://doi.org/10.7554/eLife.49180.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Finn AJ, Feng G, Pendergast AM (2003) Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction. Nat Neurosci 6:717–723

    Article  CAS  PubMed  Google Scholar 

  170. Mittaud P, Marangi PA, Erb-Vögtli S et al (2001) Agrin-induced activation of acetylcholine receptor-bound Src family kinases requires Rapsyn and correlates with acetylcholine receptor clustering. J Biol Chem 276:14505–14513. https://doi.org/10.1074/jbc.M007024200

    Article  CAS  PubMed  Google Scholar 

  171. Fuhrer C, Sugiyama JE, Taylor RG et al (1997) Association of muscle-specific kinase MuSK with the acetylcholine receptor in mammalian muscle. EMBO J 16:4951–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Parkhomovskiy N, Kammesheidt A, Martin PT (2000) N-acetyllactosamine and the CT carbohydrate antigen mediate agrin-dependent activation of MuSK and acetylcholine receptor clustering in skeletal muscle. Mol Cell Neurosci 15:380–397. https://doi.org/10.1006/mcne.2000.0835

    Article  CAS  PubMed  Google Scholar 

  173. Mohamed AS, Swope SL (1999) Phosphorylation and cytoskeletal anchoring of the acetylcholine receptor by Src class protein-tyrosine kinases Activation by rapsyn. J Biol Chem 274:20529–20539. https://doi.org/10.1074/jbc.274.29.20529

    Article  CAS  PubMed  Google Scholar 

  174. Okamoto T, Schlegel A, Scherer PE et al (1998) Caveolins, a family of scaffolding proteins for organizing ‘“preassembled signaling complexes”’ at the plasma membrane. J Biol Chem 273:5419–5422. https://doi.org/10.1074/jbc.273.10.5419

    Article  CAS  PubMed  Google Scholar 

  175. Way M, Parton RG (1995) M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett 376:108–112. https://doi.org/10.1016/0014-5793(95)01256-7

    Article  CAS  PubMed  Google Scholar 

  176. Tang Z, Scherer PE, Okamoto T et al (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261. https://doi.org/10.1074/jbc.271.4.2255

    Article  CAS  PubMed  Google Scholar 

  177. Weston C, Yee B, Hod E et al (2000) Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. J Cell Biol 150:205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pradhan BS, Prószyński TJ (2020) A role for caveolin-3 in the pathogenesis of muscular dystrophies. Int J Mol Sci. https://doi.org/10.3390/ijms21228736

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hezel M, de Groat WC, Galbiati F (2010) Caveolin-3 promotes nicotinic acetylcholine receptor clustering and regulates neuromuscular junction activity. Mol Biol Cell 21:302–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhou H, Glass DJ, Yancopoulos GD et al (1999) Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J Cell Biol 146:1133–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Apel ED, Glass DJ, Moscoso LM et al (1997) Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18:623–635

    Article  CAS  PubMed  Google Scholar 

  182. Smith CL, Mittaud P, Prescott ED et al (2001) Src, Fyn, and Yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors. J Neurosci 21:3151–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gervásio OL, Whitehead NP, Yeung EW et al (2008) TRPC1 binds to caveolin-3 and is regulated by Src kinase—role in Duchenne muscular dystrophy. J Cell Sci 121:2246–2255. https://doi.org/10.1242/jcs.032003

    Article  CAS  PubMed  Google Scholar 

  184. Sadasivam G, Willmann R, Lin S et al (2005) Src-family kinases stabilize the neuromuscular synapse in vivo via protein interactions, phosphorylation, and cytoskeletal linkage of acetylcholine receptors. J Neurosci 25:10479–10493. https://doi.org/10.1523/JNEUROSCI.2103-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gautam M, Noakes PG, Mudd J et al (1995) Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377:232–236

    Article  CAS  PubMed  Google Scholar 

  186. Maimone MM, Enigk RE (1999) The intracellular domain of the nicotinic acetylcholine receptor α subunit mediates its coclustering with rapsyn. Mol Cell Neurosci 14:340–354

    Article  CAS  PubMed  Google Scholar 

  187. Zuber B, Unwin N (2013) Structure and superorganization of acetylcholine receptor-rapsyn complexes. Proc Natl Acad Sci U S A 110:10622–10627. https://doi.org/10.1073/pnas.1301277110

    Article  PubMed  PubMed Central  Google Scholar 

  188. Lee Y, Rudell J, Ferns M (2009) Rapsyn interacts with the muscle acetylcholine receptor via alpha-helical domains in the alpha, beta, and epsilon subunit intracellular loops. Neuroscience 163:222–232. https://doi.org/10.1016/j.neuroscience.2009.05.057

    Article  CAS  PubMed  Google Scholar 

  189. LaRochelle WJ, Froehner SC (1987) Comparison of the postsynaptic 43-kDa protein from muscle cells that differ in acetylcholine receptor clustering activity. J Biol Chem 262:8190–8195. https://doi.org/10.1016/S0021-9258(18)47547-3

    Article  CAS  PubMed  Google Scholar 

  190. Ramarao MK, Cohen JB (1998) Mechanism of nicotinic acetylcholine receptor cluster formation by rapsyn. Proc Natl Acad Sci 95:4007–4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Frail DE, McLaughlin LL, Mudd J et al (1988) Identification of the mouse muscle 43,000-dalton acetylcholine receptor-associated protein (RAPsyn) by cDNA cloning. J Biol Chem 263:15602–15607. https://doi.org/10.1016/S0021-9258(19)37631-8

    Article  CAS  PubMed  Google Scholar 

  192. Ramarao MK, Bianchetta MJ, Lanken J et al (2001) Role of rapsyn tetratricopeptide repeat and coiled-coil domains in self-association and nicotinic acetylcholine receptor clustering. J Biol Chem 276:7475–7483. https://doi.org/10.1074/jbc.M009888200

    Article  CAS  PubMed  Google Scholar 

  193. Scotland PB, Colledge M, Melnikova I et al (1993) Clustering of the acetylcholine receptor by the 43-kD protein: involvement of the zinc finger domain. J Cell Biol 123:719–728

    Article  CAS  PubMed  Google Scholar 

  194. Strochlic L, Cartaud A, Cartaud J (2005) The synaptic muscle-specific kinase (MuSK) complex: new partners, new functions. BioEssays 27:1129–1135. https://doi.org/10.1002/bies.20305

    Article  CAS  PubMed  Google Scholar 

  195. Pendergast AM (2002) The Abl family kinases: mechanisms of regulation and signalling. Advances in cancer research, vol 85. Academic Press, pp 51–100

    Google Scholar 

  196. Luo ZG, Wang Q, Zhou JZ et al (2002) Regulation of AChR clustering by dishevelled interacting with MuSK and PAK1. Neuron 35:489–505

    Article  CAS  PubMed  Google Scholar 

  197. Dai Z, Luo X, **e H et al (2000) The actin-driven movement and formation of acetylcholine receptor clusters. J Cell Biol 150:1321–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wang J, **g Z, Zhang L et al (2003) Regulation of acetylcholine receptor clustering by the tumor suppressor APC. Nat Neurosci 6:1017–1018. https://doi.org/10.1038/nn1128

    Article  CAS  PubMed  Google Scholar 

  199. Pilgram GSK, Potikanond S, Baines RA et al (2010) The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol Neurobiol 41:1–21. https://doi.org/10.1007/s12035-009-8089-5

    Article  CAS  PubMed  Google Scholar 

  200. Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–823

    Article  CAS  PubMed  Google Scholar 

  201. Rando TA (2001) The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24:1575–1594. https://doi.org/10.1002/mus.1192

    Article  CAS  PubMed  Google Scholar 

  202. Campanelll JT, Roberds SL, Campbell KP et al (1994) A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 77:663–674

    Article  Google Scholar 

  203. Haenggi T, Fritschy J-M (2006) Role of dystrophin and utrophin for assembly and function of the dystrophin glycoprotein complex in non-muscle tissue. Cell Mol Life Sci 63:1614–1631. https://doi.org/10.1007/s00018-005-5461-0

    Article  CAS  PubMed  Google Scholar 

  204. Peters MF, Sadoulet-Puccio HM, Mark Grady R et al (1998) Differential membrane localization and intermolecular associations of α-dystrobrevin isoforms in skeletal muscle. J Cell Biol 142:1269–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ohlendieck K, Ervasti JM, Matsumura K et al (1991) Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron 7:499–508

    Article  CAS  PubMed  Google Scholar 

  206. Bartoli M, Ramarao MK, Cohen JB (2001) Interactions of the rapsyn RING-H2 domain with dystroglycan. J Biol Chem 276:24911–24917. https://doi.org/10.1074/jbc.M103258200

    Article  CAS  PubMed  Google Scholar 

  207. Raats CI, van den Born J, Bakker MA et al (2000) Expression of agrin, dystroglycan, and utrophin in normal renal tissue and in experimental glomerulopathies. Am J Pathol 156:1749–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Smalheiser NR, Kim E (1995) Purification of cranin, a laminin binding membrane protein. Identity with dystroglycan and reassessment of its carbohydrate moieties. J Biol Chem 270:15425–15433. https://doi.org/10.1074/jbc.270.25.15425

    Article  CAS  PubMed  Google Scholar 

  209. Martin PT, Sanes JR (1995) Role for a synapse-specific carbohydrate in agrin-induced clustering of acetylcholine receptors. Neuron 14:743–754

    Article  CAS  PubMed  Google Scholar 

  210. Sanes JR, Cheney JM (1982) Lectin binding reveals a synapse-specific carbohydrate in skeletal muscle. Nature 300:646–647

    Article  CAS  PubMed  Google Scholar 

  211. Scott LJ, Bacou F, Sanes JR (1988) A synapse-specific carbohydrate at the neuromuscular junction: association with both acetylcholinesterase and a glycolipid. J Neurosci 8:932–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ervasti JM, Burwell AL, Geissler AL (1997) Tissue-specific heterogeneity in alpha-dystroglycan sialoglycosylation. Skeletal muscle alpha-dystroglycan is a latent receptor for Vicia villosa agglutinin b4 masked by sialic acid modification. J Biol Chem 272:22315–22321. https://doi.org/10.1074/jbc.272.35.22315

    Article  CAS  PubMed  Google Scholar 

  213. Shurer CR, Kuo JCH, Roberts LM et al (2019) Physical principles of membrane shape regulation by the glycocalyx. Cell 177:1757-1770.e21. https://doi.org/10.1016/j.cell.2019.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sotgia F, Lee JK, Das K et al (2000) Caveolin-3 directly interacts with the C-terminal tail of beta-dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem 275:38048–38058. https://doi.org/10.1074/jbc.M005321200

    Article  CAS  PubMed  Google Scholar 

  215. Fambrough DM (1979) Control of acetylcholine receptors in skeletal muscle. Physiol Rev 59:165–227

    Article  CAS  PubMed  Google Scholar 

  216. Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66:511–548

    Article  CAS  PubMed  Google Scholar 

  217. Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447. https://doi.org/10.1146/annurev.biochem.72.121801.161800

    Article  CAS  PubMed  Google Scholar 

  218. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172. https://doi.org/10.1146/annurev.cellbio.19.110701.154617

    Article  CAS  PubMed  Google Scholar 

  219. Shenoy SK, McDonald PH, Kohout TA et al (2001) Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 294:1307–1313

    Article  CAS  PubMed  Google Scholar 

  220. Arnason T, Ellison MJ (1994) Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol 14:7876–7883

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Thrower JS, Hoffman L, Rechsteiner M et al (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102. https://doi.org/10.1093/emboj/19.1.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lineberry N, Su L, Soares L et al (2008) The single subunit transmembrane E3 ligase gene related to anergy in lymphocytes (GRAIL) captures and then ubiquitinates transmembrane proteins across the cell membrane. J Biol Chem 283:28497–28505. https://doi.org/10.1074/jbc.M805092200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Traub LM, Kornfeld S (1997) The trans-Golgi network: a late secretory sorting station. Curr Opin Cell Biol 9:527–533

    Article  CAS  PubMed  Google Scholar 

  224. Camus G, Jasmin BJ, Cartaud J (1998) Polarized sorting of nicotinic acetylcholine receptors to the postsynaptic membrane in torpedo electrocyte. Eur J Neurosci 10:839–852

    Article  CAS  PubMed  Google Scholar 

  225. MacGurn JA, Hsu PC, Emr SD (2012) Ubiquitin and membrane protein turnover: from cradle to grave. Annu Rev Biochem 81:231–259. https://doi.org/10.1146/annurev-biochem-060210-093619

    Article  CAS  PubMed  Google Scholar 

  226. Hu YB, Dammer EB, Ren RJ et al (2015) The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener 4:18. https://doi.org/10.1186/s40035-015-0041-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Burd C, Cullen PJ (2014) Retromer: a master conductor of endosome sorting. Cold Spring Harb Perspect Biol 6:a016774. https://doi.org/10.1101/cshperspect.a016774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bonifacino JS, Hurley JH (2008) Retromer. Curr Opin Cell Biol 20:427–436. https://doi.org/10.1016/j.ceb.2008.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Li X, DiFiglia M (2012) The recycling endosome and its role in neurological disorders. Prog Neurobiol 97:127–141. https://doi.org/10.1016/j.pneurobio.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  230. Poteryaev D, Datta S, Ackema K et al (2010) Identification of the switch in early-to-late endosome transition. Cell 141:497–508. https://doi.org/10.1016/j.cell.2010.03.011

    Article  CAS  PubMed  Google Scholar 

  231. Villarroel-Campos D, Gastaldi L, Conde C et al (2014) Rab-mediated trafficking role in neurite formation. J Neurochem 129:240–248. https://doi.org/10.1111/jnc.12676

    Article  CAS  PubMed  Google Scholar 

  232. Tjelle TE, Brech A, Juvet LK et al (1996) Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: their role in protein degradation. J Cell Sci 109(12):2905–2914

    Article  CAS  PubMed  Google Scholar 

  233. Pillay CS, Elliott E, Dennison C (2002) Endolysosomal proteolysis and its regulation. Biochem J 363:417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Fehrenbacher N, Bar-Sagi D, Philips M (2009) Ras/MAPK signaling from endomembranes. Mol Oncol 3:297–307. https://doi.org/10.1016/j.molonc.2009.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Di Fiore PP, de Camilli P (2001) Endocytosis and signaling: an inseparable partnership. Cell 106:1–4

    Article  PubMed  Google Scholar 

  236. Oksvold MP, Skarpen E, Wierød L et al (2001) Re-localization of activated EGF receptor and its signal transducers to multivesicular compartments downstream of early endosomes in response to EGF. Eur J Cell Biol 80:285–294. https://doi.org/10.1078/0171-9335-00160

    Article  CAS  PubMed  Google Scholar 

  237. Jura N, Scotto-Lavino E, Sobczyk A et al (2006) Differential modification of Ras proteins by ubiquitination. Mol Cell 21:679–687. https://doi.org/10.1016/j.molcel.2006.02.011

    Article  CAS  PubMed  Google Scholar 

  238. Yan H, Chin ML, Horvath EA et al (2009) Impairment of ubiquitylation by mutation in Drosophila E1 promotes both cell-autonomous and non-cell-autonomous Ras-ERK activation in vivo. J Cell Sci 122:1461–1470. https://doi.org/10.1242/jcs.042267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Horst Thiermann for assigning the topic of the nicotinic acetylcholine receptor and for his extensive support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript conception and design. Review collection and formal conceptualization were performed by Sabrina Brockmöller. The first draft of the manuscript was written by Sabrina Brockmöller and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sabrina Brockmöller.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brockmöller, S., Worek, F. & Rothmiller, S. Protein networking: nicotinic acetylcholine receptors and their protein–protein-associations. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-05032-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-05032-x

Keywords

Navigation