Log in

Semaglutide ameliorates obesity-induced cardiac inflammation and oxidative stress mediated via reduction of neutrophil Cxcl2, S100a8, and S100a9 expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Obesity, which is driven by inflammation and oxidative stress, is a risk factor for cardiovascular disease. Semaglutide, a glucagon-like peptide-1 receptor agonist, is an antidiabetic drug with major effects on weight loss. In this study, single-cell transcriptomics was used to examine non-cardiomyocytes to uncover the mechanism of obesity-induced myocardial damage and the cardioprotective impact of semaglutide. We constructed obese mouse models and measured Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), Reactive Oxygen Species (ROS), and Malonic dialdehyde (MDA) levels in serum and heart tissue to determine the levels of inflammation and oxidative stress in obesity and the effect of semaglutide on these levels. Then, utilizing single-cell transcriptomes to screen for key cell populations and differentially expressed genes (DEGs), we assessed the effects of obesity and semaglutide on non-cardiac cells. Finally, a DEG localization analysis was performed to explore DEGs as well as cell types associated with inflammation and oxidative stress. Semaglutide reduced increased TNF-α, IL-6, ROS, and MDA levels in serum and cardiac tissues in obese mouse. Several genes are closely associated with inflammation and oxidative stress. Chemokine (C-X-C motif) ligand 2 (Cxcl2), S100 calcium binding protein A8 (S100a8), and S100 calcium binding protein A9 (S100a9), which were elevated in obesity but decreased following semaglutide treatment, were also expressed particularly in neutrophils. Finally, by decreasing neutrophil Cxcl2, S100a8, and S100a9 expressions, semaglutide may help to reduce cardiac inflammation and oxidative stress. Semaglutide significantly reduced body weight in obese mice as well as exerted anti-inflammatory and antioxidant effects possibly by inhibiting the expression of S100a8, S100a9, and Cxcl2 in neutrophils. These discoveries are expected to reveal new molecular mechanisms underlying obesity-related heart damage and semaglutide's cardioprotective properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data supporting the results of this study are available upon reasonable request from the first author.

References

  1. Di Chiara T, Tuttolomondo A, Parrinello G, Colomba D, Pinto A, Scaglione R (2020) Obesity related changes in cardiac structure and function: role of blood pressure and metabolic abnormalities. Acta Cardiol 75(5):413–420. https://doi.org/10.1080/00015385.2019.1598638

    Article  PubMed  Google Scholar 

  2. Mouton AJ, Flynn ER, Moak SP et al (2021) Interaction of obesity and hypertension on cardiac metabolic remodeling and survival following myocardial infarction. J Am Heart Assoc 10(6):e018212. https://doi.org/10.1161/JAHA.120.018212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mia S, Sonkar R, Williams L et al (2021) Impact of obesity on day-night differences in cardiac metabolism. FASEB J 35(3):e21298. https://doi.org/10.1096/fj.202001706RR

    Article  CAS  PubMed  Google Scholar 

  4. Battineni G, Sagaro GG, Chintalapudi N, Amenta F, Tomassoni D, Tayebati SK (2021) Impact of obesity-induced inflammation on cardiovascular diseases (CVD). Int J Mol Sci 22(9):4798. https://doi.org/10.3390/ijms22094798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Senesi P, Luzi L, Terruzzi I (2020) Adipokines, myokines, and cardiokines: the role of nutritional interventions. Int J Mol Sci 21(21):8372. https://doi.org/10.3390/ijms21218372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Packer M (2018) Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol 71(20):2360–2372. https://doi.org/10.1016/j.jacc.2018.03.509

    Article  CAS  PubMed  Google Scholar 

  7. Wu YS, Zhu B, Luo AL, Yang L, Yang C (2018) The role of cardiokines in heart diseases: beneficial or detrimental? Biomed Res Int 2018:8207058. https://doi.org/10.1155/2018/8207058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang X, Li PH, Chen HZ (2020) Cardiomyocyte senescence and cellular communications within myocardial microenvironments. Front Endocrinol (Lausanne) 11:280. https://doi.org/10.3389/fendo.2020.00280

    Article  PubMed  Google Scholar 

  9. Wang L, Yang Y, Ma H et al (2022) Single-cell dual-omics reveals the transcriptomic and epigenomic diversity of cardiac non-myocytes. Cardiovasc Res 118(6):1548–1563. https://doi.org/10.1093/cvr/cvab134

    Article  CAS  PubMed  Google Scholar 

  10. Colliva A, Braga L, Giacca M, Zacchigna S (2020) Endothelial cell-cardiomyocyte crosstalk in heart development and disease. J Physiol 598(14):2923–2939. https://doi.org/10.1113/JP276758

    Article  CAS  PubMed  Google Scholar 

  11. Zhao G, Lu H, Liu Y et al (2021) Single-cell transcriptomics reveals endothelial plasticity during diabetic atherogenesis. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.689469

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ni SH, Xu JD, Sun SN et al (2022) Single-cell transcriptomic analyses of cardiac immune cells reveal that Rel-driven CD72-positive macrophages induce cardiomyocyte injury. Cardiovasc Res 118(5):1303–1320. https://doi.org/10.1093/cvr/cvab193

    Article  CAS  PubMed  Google Scholar 

  13. Rao M, Wang X, Guo G et al (2021) Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res Cardiol 116(1):55. https://doi.org/10.1007/s00395-021-00897-1

    Article  PubMed  Google Scholar 

  14. Yang Q, Zhou F, Tang X et al (2022) Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents. Eur J Med Chem 233:114214. https://doi.org/10.1016/j.ejmech.2022.114214

    Article  CAS  PubMed  Google Scholar 

  15. Newsome P, Francque S, Harrison S et al (2019) Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment Pharmacol Ther 50(2):193–203. https://doi.org/10.1111/apt.15316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ryan DH, Lingvay I, Colhoun HM et al (2020) Semaglutide effects on cardiovascular outcomes in people with overweight or obesity (SELECT) rationale and design. Am Heart J 229:61–69. https://doi.org/10.1016/j.ahj.2020.07.008

    Article  PubMed  Google Scholar 

  17. Rakipovski G, Rolin B, Nøhr J et al (2018) The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE-/- and LDLr-/- mice by a mechanism that includes inflammatory pathways. JACC Basic Transl Sci 3(6):844–857. https://doi.org/10.1016/j.jacbts.2018.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li Q, Tuo X, Li B, Deng Z, Qiu Y, **e H (2020) Semaglutide attenuates excessive exercise-induced myocardial injury through inhibiting oxidative stress and inflammation in rats. Life Sci 250:117531. https://doi.org/10.1016/j.lfs.2020.117531

    Article  CAS  PubMed  Google Scholar 

  19. **e C, Wu W, Tang A, Luo N, Tan Y (2019) lncRNA GAS5/miR-452-5p reduces oxidative stress and pyroptosis of high-glucose-stimulated renal tubular cells. Diabetes Metab Syndr Obes 12:2609–2617. https://doi.org/10.2147/DMSO.S228654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paik DT, Tian L, Williams IM et al (2020) Single-Cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells. Circulation 142(19):1848–1862. https://doi.org/10.1161/CIRCULATIONAHA.119.041433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heng TS, Painter MW, Immunological Genome Project Consortium (2008) The immunological genome project: networks of gene expression in immune cells. Nat Immunol 9(10):1091–1094. https://doi.org/10.1038/ni1008-1091

    Article  CAS  PubMed  Google Scholar 

  22. Aran D, Looney AP, Liu L et al (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20(2):163–172. https://doi.org/10.1038/s41590-018-0276-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kawai T, Autieri MV, Scalia R (2021) Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 320(3):C375–C391. https://doi.org/10.1152/ajpcell.00379.2020

    Article  CAS  PubMed  Google Scholar 

  24. Yuxin L, Chen L, **aoxia L et al (2021) Research progress on the relationship between obesity-inflammation-aromatase axis and male infertility. Oxid Med Cell Longev 2021:6612796. https://doi.org/10.1155/2021/6612796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goswami SK, Ranjan P, Dutta RK, Verma SK (2021) Management of inflammation in cardiovascular diseases. Pharmacol Res 173:105912. https://doi.org/10.1016/j.phrs.2021.105912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geng Z, Fan WY, Zhou B et al (2019) FNDC5 attenuates obesity-induced cardiac hypertrophy by inactivating JAK2/STAT3-associated inflammation and oxidative stress. J Transl Med 17(1):107. https://doi.org/10.1186/s12967-019-1857-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zeng C, Zhong P, Zhao Y et al (2015) Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J Mol Cell Cardiol 79:1–12. https://doi.org/10.1016/j.yjmcc.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  28. Jiménez-González S, Marín-Royo G, Jurado-López R et al (2020) The crosstalk between cardiac lipotoxicity and mitochondrial oxidative stress in the cardiac alterations in diet-induced obesity in rats. Cells 9(2):451. https://doi.org/10.3390/cells9020451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gasparini PVF, Matias AM, Torezani-Sales S et al (2021) High-fat and combined high-fat and sucrose diets promote cardiac oxidative stress independent of Nox2 redox regulation and obesity in rats. Cell Physiol Biochem 55(5):618–634. https://doi.org/10.33594/000000441

    Article  CAS  PubMed  Google Scholar 

  30. Borato DC, Parabocz GC, Ribas JT et al (2016) Biomarkers in obesity: serum myeloperoxidase and traditional cardiac risk parameters. Exp Clin Endocrinol Diabetes 124(1):49–54. https://doi.org/10.1055/s-0035-1565093

    Article  CAS  PubMed  Google Scholar 

  31. Guo LY, Yang F, Peng LJ, Li YB, Wang AP (2020) CXCL2, a new critical factor and therapeutic target for cardiovascular diseases. Clin Exp Hypertens 42(5):428–437. https://doi.org/10.1080/10641963.2019.1693585

    Article  CAS  PubMed  Google Scholar 

  32. Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250(2):91–104. https://doi.org/10.1046/j.1365-2796.2001.00867.x

    Article  CAS  PubMed  Google Scholar 

  33. Xu N, Zhang BB, Huang XN et al (2021) S100A8/A9 molecular complexes promote cancer migration and invasion via the p38 MAPK pathway in nasopharyngeal carcinoma. Bioinorg Chem Appl 2021:9913794. https://doi.org/10.1155/2021/9913794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang S, Song R, Wang Z, **g Z, Wang S, Ma J (2018) S100A8/A9 in inflammation. Front Immunol 9:1298. https://doi.org/10.3389/fimmu.2018.01298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen N, Miao L, Lin W et al (2021) Integrated DNA methylation and gene expression analysis identified S100A8 and S100A9 in the pathogenesis of obesity. Front Cardiovasc Med 8:631650. https://doi.org/10.3389/fcvm.2021.631650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu W, Lin C (2021) S100a8 silencing attenuates inflammation, oxidative stress and apoptosis in BV2 cells induced by oxygen-glucose deprivation and reoxygenation by upregulating GAB1 expression. Mol Med Rep 23(1):64. https://doi.org/10.3892/mmr.2020.11702

    Article  CAS  PubMed  Google Scholar 

  37. Wu Y, Li Y, Zhang C et al (2014) S100a8/a9 released by CD11b+Gr1+ neutrophils activates cardiac fibroblasts to initiate angiotensin II-Induced cardiac inflammation and injury. Hypertension 63(6):1241–1250

    Article  CAS  PubMed  Google Scholar 

  38. Averill MM, Kerkhoff C, Bornfeldt KE (2012) S100A8 and S100A9 in cardiovascular biology and disease. Arterioscler Thromb Vasc Biol 32(2):223–229. https://doi.org/10.1161/ATVBAHA.111.236927

    Article  CAS  PubMed  Google Scholar 

  39. Sreejit G, Abdel Latif A, Murphy AJ, Nagareddy PR (2020) Emerging roles of neutrophil-borne S100A8/A9 in cardiovascular inflammation. Pharmacol Res 161:105212. https://doi.org/10.1016/j.phrs.2020.105212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Chen B, Yang X et al (2019) S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation 140(9):751–764. https://doi.org/10.1161/CIRCULATIONAHA.118.039262

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Hebei Province Natural Science Foundation (H2022307026).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by XP, LY, LY, SW and YL The first draft of the manuscript was written by XP Writing (review and editing) was performed by SC; all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuchun Chen.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interests in this study.

Ethical Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Hebei General Hospital (Date March 11, 2022/No. 202285).

Informed consent

Written informed consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Yang, L., Wang, S. et al. Semaglutide ameliorates obesity-induced cardiac inflammation and oxidative stress mediated via reduction of neutrophil Cxcl2, S100a8, and S100a9 expression. Mol Cell Biochem 479, 1133–1147 (2024). https://doi.org/10.1007/s11010-023-04784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04784-2

Keywords

Navigation