Introduction

In Wuhan, China in December 2019, a newly emergent novel coronavirus SARS-CoV-2 was reported to cause severe acute respiratory tract infections, coronavirus disease 2019 (COVID-19) [1]. After the first case of corona reported from Wuhan, there has been an unprecedented outbreak of COVID-19. As of the last week of August 2020, over 25 million cases of this disease have been reported from 210 countries with 3.32% deaths [2, 3]. The United Nations called the pandemics of COVID-19 as the worst global humanitarian crisis since World War II. Countries all over the world are taking aggressive steps and adopting all possible preventive measures to combat the spread of this disease. The disease is associated with high mortality risk (2–8% in different countries), a very high transmission rate combined with the lack of WHO or FDA approved specific prophylactic vaccines or therapeutic protocols for the effective prevention, treatment or management of the disease. A typical viral disease mechanism involves the entry of virus into the host via specific receptor, followed by uncoating, transcription and genome synthesis finally forming viral assembly and releasing of multiple copies in the host. The antiviral drugs are designed to act on such varied targets (Fig. 1).

Fig. 1
figure 1

Typical viral disease mechanism and various targets for antiviral drugs

The current treatment appears to be mainly supportive in nature [4, 5]. From time immemorial, herbal medicine has provided remedies for majority of the diseases, for e.g., digitalis and reserpine for cardiac patients, artemisinin and quinine for malaria, vincristine and vinblastine for cancer. Some potential drug candidates including blockbuster antivirals like Remdesivir, Hydroxychloroquine, Lopinavir, Ritonavir, APN01 or Favipiravir are being tested for clinical trials across the globe. Still no therapy has been found to be effective or devoid of deleterious effects against COVID-19 as of now [6,7,8]. Kee** in view the shortcomings associated with available antiviral drugs therapies, i.e. viral resistance coupled with the problem of viral latency and conflicting efficacy in recurrent infection in immunocompromised patients, there is an increasing need for search of new compounds and therapy with antiviral activity that are highly efficacious and cost-effective for the management and control of viral infections. Moreover, the viral infections caused by Coronaviruses, Human immunodeficiency virus, Ebola virus, Nipah virus, Influenza virus, Enterovirus, Swine flu, Bird flu, Zika Virus, Hepatitis B and C, etc. have risen significantly and natural products play a vital role in the cure for some with no or less harmful effects [9, 10]. Novel bioactive phytomolecules bearing credible therapeutic potential against such viral diseases is the prime focus of the current medical research in order to gain an upper edge over such widespread infections and prevent the future ones [11, 12]. Identification of the antiviral mechanisms from these natural agents has shed light for further research targeting virus–host-specific interactions.

Indian subcontinent has been recognized as a treasure home for various plant species due to its varied agro-climatic zones and suitable topographical conditions and is placed among the list of top 12 mega diversity countries of the world. The Indian subcontinent is endowed with rich and diverse flora about which the ethnobotanical literature describes use as plant extracts, infusions and powders for diseases of infectious nature [13]. These medicinal herbs provide a wide approach in managing several diseases, including viral respiratory infections by modulating immune system and inflammatory responses. AYUSH system of medicine has provided a basic approach on prevention of infection through dietary modification, lifestyle management, remedies to boost immune system and preventive interventions based on the symptom [14]. Around 65–80% of the world population residing in develo** countries utilizes traditional herbs in their primary health treatment. Additionally, the interest in the study of herbs have aroused due to their phytoactive/phytotherapeutic agents which can be utilized in the form of nutraceuticals, which possess drug-like actions, and in some cases can be traced directly through the existing links between a local and biomedical use [15]. The lack of preventive and curative treatment of COVID-19 till date compels the researchers to look onto therapeutic alternatives that can be added in our daily diets in order to both prevent and cure such life-threatening infections and provide long-term protection. For centuries, numerous plants have been used in daily diets which serve as folk remedies by supporting the body system in one way or the other [16].

This review aims to bring focus on the detailed information about herbal flora with antiviral activities that can be explored for development of novel nutraceutical herbal formulations. Advancement in separation technologies, adoption of modern drug discovery and the development of vector-based strategies for antiviral screening purposes offers a promise for edible medicinal plants usage in daily diet, and may serve as an alternative therapy for treatment of this pandemic and prevention of another one. The article also aimed to merge the ethnopharmacological knowledge with the modern technologies to devise drug targets for the SARS-COV-2 virus and identification of potential candidates from natural sources which may offer some preventive or even therapeutic value.

Pathogenesis of COVID-19 and strategy for using edible plants

For a better insight on how nutraceuticals or phytomolecules can effectively work against novel coronaviruses, it is imperative to understand the structural characteristics and culpable targets and receptors associated with it. Moreover, understanding the mechanism of action of conventional antivirals and liable targets for drug designing may be useful for development of therapy regimen for COVID-19 from natural sources. SARS-CoV-2 like other HCoVs is positive-sense single-stranded RNA viruses with two groups of protein forming its characteristic markers: structural protein, such as Spike (S), Nucleocapsid (N), Matrix (M), Envelope (E); and non-structural proteins such as nsp12-RNA-dependent RNA polymerase (RdRp), Nsp3- Papain-like proteinases, Nsp5-3C-like main protease and nsP13 SARS-CoV helicase [17, 18]. Primarily, nsP13 helicase, 3CL protease, nsp12-RNA-dependent RNA polymerase (RdRp) become primary target for drug development. Apart from these proteins, the viral spike glycoprotein (S) initial attachment and internalization within host cells ACE-2 receptor can also be targeted to prevent viral entry into newer host cells [19]. SARS-CoV-2 recognizes human angiotensin-converting-enzyme-2 (ACE-2), thereby proving its essentiality for host cell entry by invasion of alveolar epithelial cells, subsequent viral replication and primary host lung cells infection as ACE-2 is highly expressed in the heart, lungs, intestine, kidney and blood vessels [20]. The expression of ACE-2 is substantially increased in patients with diabetes and hypertension and the connecting link to this associated comorbidity has been the angiotensin-converting-enzyme-2 (ACE-2) receptor as it is the site of virus multiplication, and thus a strategy has been devised to develop antiviral newer drugs considering the ACE-2 as an attractive target [21]. Various plants produce phytomolecules that can be utilized in targeting these viral targets and so has been done previously in case of other viral diseases like SARS, HIV, HCV, etc. [22,23,24].

At the molecular level, the virus SARS-CoV-2 binds to the angiotensin-converting-enzyme-2 (ACE-2) present in the lungs of the human host. Binding of the virus to the host cells through its trimeric spike glycoprotein makes this protein a key target for potential therapies and diagnostics. It was reported that in SARS-CoV-2, the S2 subunit in each spike monomer contains a fusion peptide, a transmembrane domain, and cytoplasmic domain which is highly conserved and could be a possible target for antiviral (anti-S2) compounds [25]. There occurs multiplication of the viruses that induces cellular responses. There occurs infiltration of huge number of inflammatory cells which comprise innate immune cells and adaptive immune cells [26, 34]. Herbal preparations that possess immunomodulatory activity may serve as prophylactic treatment, if added in daily diet, for prevention of infection acquisition during this spell of critical community level spread and help contain the disease in community as well as help faster healing post infection. Considering the above strategies for treatment, management and prevention of COVID- 19, a search for potential plants with above properties can help to devise natural plant-derived antiviral agents against the pandemic disease.

Edible plants exhibiting antiviral property against RNA viruses: initial signals for COVID-19

The secondary metabolites obtained from herbal drugs can also be utilized as nutraceuticals and can become a lead compound in the treatment therapy [35]. Studies have also shown promising results of nutraceuticals and phytomolecules in various pathological complications such as diabetes, atherosclerosis, cardiovascular diseases (CVDs), cancer and neurological disorders [14]. Since ages, herbs of Indian origin have been implemented in treatment and as preventive strategies for several diseases that include respiratory viral infections as the benefit of usage of these herbs against viral respiratory infections lies in immune stimulation and inflammation modulating effects. The AYUSH systems of medicine also promotes prevention of COVID-19 through lifestyle modification as well as dietary management and prophylactic interventions for improving the immunity [31]. All these have led to a revival of interest in herbal medicines, novel nutraceuticals and herbal formulations with antiviral potency based on any of the potential plants. Looking into the results of previously deciphered phytochemical-directed researches, a wide variety of phytomolecules present in Indian forest biodiversity can point towards their capability to be manipulated into devising antiviral drugs for SARS-CoV-2. Table 1 provides detailed information on edible plants used as food or nutraceutical showing antiviral activity against RNA viruses, their potential to be explored against COVID-19 on the basis of antiviral activity against various RNA viruses, their active phytoconstituents bearing potential anti-coronaviral activity and mechanism of action.

Table 1 Edible plants present in Indian biodiversity being used as food or nutraceutical showing anti-retroviral activity

Plants preventing entry of virus in the host

It has been reported that flavonoids can bind to the functional domains of the SARS-CoV-2S protein, a viral surface glycoprotein required for initial attachment and internalization within host cells. Emodin from plants of family polygonaceae can block the interaction with the SARS-coronavirus spike protein by inhibiting the 3a ion channel of SARS-CoV and HCoV-OC43 [36]. Lectins, the natural proteins, also target the sugar moieties of a SARS-CoV spike protein. In time-of-addition assay conducted to understand mechanism of antiviral action, glucose-, galactose-, N-acetyl glucosamine- and N-acetyl galactosamine binding lectins and most importantly mannose binding lectin indicated their interference with virus attachment to spike protein making them early entry inhibitors. Lectins also carry prophylactic potentials as it agglutinates viral particles by binding to it, thereby not allowing it to bind to human cell receptors and complete its pathogenic cycle [37]. As SARS-CoV-2 also uses host receptor ACE-2 for the cellular entrance similar to SARS-CoV [38], medicinal herbs with the capacity to target ACE-2 therefore holds a promising effect in the prevention and infection of SARS-CoV-2. Various edible medicinal plants, including Cynara scolymus [39], Cassia occidentalis [40] and Punica granatum [41], have shown ACE inhibitory effects, and the same can be explored for inhibition of ACE2 also.

Plants inhibiting viral replication

Studies on edible plants, such as Glycyrrhiza glabra [42], Allium sativum [43], showed the inhibition of viral replication of SARS-CoV that can be further utilized as leads against SARS-CoV-2, due to similar homology between SARS-CoV and SARS-CoV-2 [44]. Edible antiviral plants like Aloe vera [45], Gingko [46], Olea europaea [47], Cicer arietinum [48], Nigella sativa [49], Agrimonia Pilosa [50], Commelina communis [51], Mangifera indica [52], Syzygium cumini [53] that showed effects against influenza virus can be studied rigorously to investigate any relatable target between SARS-CoV-2 and influenza virus.

Myricetin and scutellarein can act as novel chemical inhibitors of the SARS coronavirus helicase, nsP13 [54]. Flavonoids isolated from medicinal plants have been reported to show antiviral activity. Quercetin, epigallocatechin gallate and gallocatechin gallate showed inhibitory activity against 3CLpro of SARS-CoV [55]. Plants showing inhibitory effects on HIV proteases, such as Eugenia jambolana, Areca nut [56], can be investigated for their effects on SARS-CoV-2. Similarly, plants like Ocimum sanctum [57], Phaseolus vulgaris [58], Phyllanthus emblica [59] having HIV reverse transcriptase activity can also be studied against SARS-CoV-2. Plants like Solanum nigrum [60] have been known to target the reverse transcriptase activity of HIV and can be studied for activity against SARS-CoV-2 as well; betulinic acid, savinin and some plant-based phenolic compounds are competitive inhibitors of SARS-CoV 3CL protease [61]. Azadirachta indica inhibits viral replication in Group B Coxsackieviruses virus and can be investigated for their possible effects against SARS-CoV-2 [62]. Another herb Aegle marmelos inhibited viral replication in human coxsackieviruses B1-B6 infection and can be used in the study against SARS-CoV-2 [62]. Another potential target that can be utilized for the inhibition of CoV replication is proteases [63]. Trachyspermum ammi [64] and Solanum nigrum [65] inhibited viral protease enzymes in hepatitis C virus (HCV) infection. Acalypha indica showed selective anti-VSV activity by protein interaction [64], and Ocimum sanctum also inhibited HIV protease enzyme [57]; therefore these plants can be studied against SARS-CoV-2 as they may target protease enzymes.

Plants inhibiting viral envelop formation

Sambucus ebulus has been known to inhibit the activity of enveloped viruses and can also be used to target this virus. Though the detailed mechanism remains unclear, Sambucus ebulus is indicated to inhibit the entry of enveloped viruses owing to the presence of lectins that block viral entry. Phenolic compounds like quertin 3–0-glucoside and isorhamnetin present in the plant have previously demonstrated the prophylactic potential against Ebola virus. The flavonoids, diosgenin and yomogenin of Sambucus species also showed viral entry inhibition against Hepatitis C viruses [61].

Antiviral plants with unknown mechanism

A study on Abutilon indicum, Gymnema sylvestre, Leucas aspera showed anti-mouse coronaviral activity which is a surrogate of human SARS virus but its mechanism of action is still unexplored and requires more research in this area [66]. Leucas aspera has been shown to have anti-MCV and anti-HSV activities, Abutilon indicum extract was found active against influenza virus and Sindbis virus which is a surrogate to Hepatitis B virus. Gymnemic acid from Gymnema sylvestre has virucidal activity against Asian influenza virus, whereas Artemisia annua showed inhibitory effects against SARS-CoV and likely against SARS-CoV-2 but their mechanism of action is still unknown [47, 68]. On the other hand, Chebulagic acid and chebulinic acid from Terminalia chebula have shown efficacy to inhibit virus attachment and penetration comparable to Acyclovir as well as implement neuraminidase-mediated viral release similar to the antiviral drug oseltamivir [

References

  1. WHO (2020) Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. World Health Organization,

  2. Kusumoto IT, Nakabayashi T, Kida H, Miyashiro H, Hattori M, Namba T, Shimotohno K (1995) Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phytother Res 9(3):180–184. https://doi.org/10.1002/ptr.2650090305

    Article  CAS  Google Scholar 

  3. University JH (2020) COVID-19 Dash board by the Center for Systems Science and Engineering (CSSE) at JHU. https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6. Accessed 13 May 2020

  4. Dayer MR, Taleb-Gassabi S, Dayer MS (2017) Lopinavir; a potent drug against coronavirus infection: insight from molecular docking study. Arch Clin Infect Dis. https://doi.org/10.5812/archcid.13823

    Article  Google Scholar 

  5. Omolo C, Soni N, Fasiku V, Mackraj I, Govender T (2020) Update on therapeutic approaches and emerging therapies for SARS-CoV-2 virus. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2020.173348

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang Y, Zhang D, Du G, Du R, Zhao J, ** Y, Fu S, Gao L, Cheng Z, Lu Q (2020) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395(10236):1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schrezenmeier E, Dörner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16(3):155–166. https://doi.org/10.1038/s41584-020-0372-x

    Article  CAS  PubMed  Google Scholar 

  8. Jorge A, Ung C, Young LH, Melles RB, Choi HK (2018) Hydroxychloroquine retinopathy—implications of research advances for rheumatology care. Nat Rev Rheumatol 14(12):693–703. https://doi.org/10.1038/s41584-018-0111-8

    Article  PubMed  Google Scholar 

  9. Vijayan P, Raghu C, Ashok G, Dhanaraj S, Suresh B (2004) Antiviral activity of medicinal plants of Nilgiris. Indian J Med Res 120:24–29

    CAS  PubMed  Google Scholar 

  10. Lin L-T, Hsu W-C, Lin C-C (2014) Antiviral natural products and herbal medicines. J Tradit Complement Med 4(1):24–35. https://doi.org/10.4103/2225-4110.124335

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chung T, Kim J, Kim M, Choi S, Kim S, Chung J, Lee I, Kim SH, Hahn K, Lee I (1995) Investigation of Korean plant extracts for potential phytotherapeutic agents against B-virus hepatitis. Phytother Res 9(6):429–434. https://doi.org/10.1002/ptr.2650090609

    Article  Google Scholar 

  12. Akram M, Tahir IM, Shah SMA, Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Mehboob H (2018) Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: a systematic review. Phytother Res 32(5):811–822. https://doi.org/10.1002/ptr.6024

    Article  PubMed  Google Scholar 

  13. Vijayalatha S (2004) An Ornamental garden with medicinal plants an indirect approach for conservation of medicinal plants. J Indian J Arecanut Spices Med Plants 6(3):98–107. https://doi.org/10.1002/mnfr.201601066

    Article  CAS  Google Scholar 

  14. Zhao J (2007) Nutraceuticals, nutritional therapy, phytonutrients, and phytotherapy for improvement of human health: a perspective on plant biotechnology application. Recent Pat Biotechnol 1(1):75–97. https://doi.org/10.2174/187220807779813893

    Article  CAS  PubMed  Google Scholar 

  15. Patra JK, Das G, Kumar S, Thatoi H (2019) Ethnopharmacology and Biodiversity of Medicinal Plants. CRC Press, pp 470

  16. Vanden Berghe D, Vlietinck A, Van Hoof L (1986) Plant products as potential antiviral agents. Bull Inst Pasteur 84(2):101–147. https://doi.org/10.3923/ajava.2011.1125.1152

    Article  Google Scholar 

  17. Elfiky AA (2020) Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 248:117477. https://doi.org/10.1016/j.lfs.2020.117477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barnard DL, Kumaki Y (2011) Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol 6(5):615–631. https://doi.org/10.2217/fvl.11.33

    Article  PubMed  PubMed Central  Google Scholar 

  19. Belouzard S, Millet JK, Licitra BN, Whittaker GR (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4(6):1011–1033. https://doi.org/10.3390/v4061011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by the novel Coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS Coronavirus. J Virol 94(7):e00127-e1120. https://doi.org/10.1128/JVI.00127-20

    Article  PubMed  PubMed Central  Google Scholar 

  21. Majeed J, Ajmera P, Goyal RK (2020) Delineating clinical characteristics and comorbidities among 206 COVID-19deceasedpatients in India: Emerging significance of renin angiotensin system derangement. Diabetes Res Clin Pract. https://doi.org/10.1016/j.diabres.2020.108349

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scotti N, Buonaguro L, Tornesello ML, Cardi T, Buonaguro FM (2010) Plant-based anti-HIV-1 strategies: vaccine molecules and antiviral approaches. Expert Rev Vaccines 9(8):925–936. https://doi.org/10.1586/erv.10.79

    Article  CAS  PubMed  Google Scholar 

  23. Ho T-Y, Wu S-L, Chen J-C, Li C-C, Hsiang C-Y (2007) Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 74(2):92–101. https://doi.org/10.1016/j.antiviral.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  24. Reddy BU, Mullick R, Kumar A, Sudha G, Srinivasan N, Das S (2014) Small molecule inhibitors of HCV replication from pomegranate. Sci Rep 4:5411. https://doi.org/10.1038/srep05411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R (2020) Features, evaluation and treatment coronavirus (COVID-19). In: Statpearls [internet]. StatPearls Publishing,

  26. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8(4):420–422. https://doi.org/10.1016/S2213-2600(20)30076-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian S, Hu W, Niu L, Liu H, Xu H, **ao S-Y (2020) Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol 15(5):700–704. https://doi.org/10.1016/j.jtho.2020.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tomar B, Anders H-J, Desai J, Mulay SR (2020) Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells 9(6):1383. https://doi.org/10.3390/cells9061383

    Article  CAS  PubMed Central  Google Scholar 

  29. Small BA, Dressel SA, Lawrence CW, Drake DR III, Stoler MH, Enelow RI, Braciale TJ (2001) CD8+ T cell–mediated injury in vivo progresses in the absence of effector T cells. J Exp Med 194(12):1835–1846. https://doi.org/10.1084/jem.194.12.1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. In: Seminars in immunopathology vol 39. Springer Berlin Heidelberg., pp 529–539. doi:https://doi.org/10.1007/s00281-017-0629-x

  31. Rizzo P, Dalla Sega FV, Fortini F, Marracino L, Rapezzi C, Ferrari R (2020) COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res Cardiol 115(3):31. https://doi.org/10.1007/s00395-020-0791-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye Q, Wang B, Mao J (2020) The pathogenesis and treatment of the cytokine storm in COVID-19. J Infect 8(6):607–613. https://doi.org/10.1016/j.**f.2020.03.037

    Article  CAS  Google Scholar 

  33. Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5:562–569. https://doi.org/10.1038/s41564-020-0688-y

    Article  CAS  PubMed  Google Scholar 

  34. Prompetchara E, Ketloy C, Palaga T (2020) Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 38(1):1–9. https://doi.org/10.12932/AP-200220-0772

    Article  CAS  PubMed  Google Scholar 

  35. Heinrich M, Gibbons S (2001) Ethnopharmacology in drug discovery: an analysis of its role and potential contribution. J Pharm Pharmacol 53(4):425–432. https://doi.org/10.1211/0022357011775712

    Article  CAS  PubMed  Google Scholar 

  36. Schwarz S, Wang K, Yu W, Sun B, Schwarz W (2011) Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res 90(1):64–69. https://doi.org/10.1016/j.antiviral.2011.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, Balzarini J, Van Ranst M (2007) Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 75(3):179–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elsebai MF, Mocan A, Atanasov AG (2016) Cynaropicrin: a comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Front Pharmacol 7:472. https://doi.org/10.3389/fphar.2016.00472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lunavath V, Estari (2012) Inhibition of Human Immunodeficiency Virus (HIV-1) Reverse Transcriptase by Casia occidentalis (L) Plant Extract. Int J Eng Res 3 (7)

  41. Khan MY, Kumar V (2018) Mechanism & inhibition kinetics of bioassay-guided fractions of Indian medicinal plants and foods as ACE inhibitors. J Tradit Complement Med 9(1):73–84. https://doi.org/10.1016/j.jtcme.2018.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H (2003) Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet 361(9374):2045–2046. https://doi.org/10.1016/s0140-6736(03)13615-x

    Article  CAS  Google Scholar 

  43. Weber ND, Andersen DO, North JA, Murray BK, Lawson LD, Hughes BG (1992) In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med 58(5):417–423. https://doi.org/10.1055/s-2006-961504

    Article  CAS  PubMed  Google Scholar 

  44. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J (2020) Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27(3):325–328. https://doi.org/10.1016/j.chom.2020.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sydiskis R, Owen D, Lohr J, Rosler K, Blomster R (1991) Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrob Agents Chemother 35(12):2463–2466. https://doi.org/10.1128/aac.35.12.2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miki K, Nagai T, Suzuki K, Tsujimura R, Koyama K, Kinoshita K, Furuhata K, Yamada H, Takahashi K (2007) Anti-influenza virus activity of biflavonoids. Bioorg Med Chem Lett 17(3):772–775. https://doi.org/10.1016/j.bmcl.2006.10.075

    Article  CAS  PubMed  Google Scholar 

  47. Micol V, Caturla N, Pérez-Fons L, Más V, Pérez L, Estepa A (2005) The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antiviral Res 66(2–3):129–136. https://doi.org/10.1016/j.antiviral.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  48. Kan A, Özçelİk B, Kartal M (2009) In vitro antiviral activities under cytotoxic doses against herpes simples type-1 and parainfluensa-3 viruses of Cicer arietinum L. (Chickpea). Afr J Pharm Pharmacol 3(12):627–631

    Google Scholar 

  49. Umar S, Munir MT, Subhan S, Azam T, Nisa Q (2016) Protective and antiviral activities of Nigella sativa against avian influenza (H9N2) in turkeys. J Saudi Soc Agric Sci

  50. Shin WJ, Lee KH, Park MH, Seong BL (2010) Broad-spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses. Microbiol Immunol 54(1):11–19. https://doi.org/10.1111/j.1348-0421.2009.00173.x

    Article  CAS  PubMed  Google Scholar 

  51. Zhang GB, Bing FH, Liu J, Li Z, Liao YF, Li J, Dong CY (2010) Effect of total alkaloids from Commelina communis L on lung damage by influenza virus infection. Microbiol Immunol 54(12):754–757. https://doi.org/10.1111/j.1348-0421.2010.00277.x

    Article  CAS  PubMed  Google Scholar 

  52. Abdel-Mageed WM, Bayoumi SAH, Chen C, Vavricka CJ, Li L, Malik A, Dai H, Song F, Wang L, Zhang J, Gao GF, Lv Y, Liu L, Liu X, Sayed HM, Zhang L (2014) Benzophenone C-glucosides and gallotannins from mango tree stem bark with broad-spectrum anti-viral activity. Bioorg Med Chem 22(7):2236–2243. https://doi.org/10.1016/j.bmc.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  53. Sood R, Swarup D, Bhatia S, Kulkarni D, Dey S, Saini M, Dubey S (2012) Antiviral activity of crude extracts of Eugenia jambolana Lam. against highlypathogenic avian influenza (H5N1) virus. Indian J Exp Biol 50:179–186

    PubMed  Google Scholar 

  54. Yu M-S, Lee J, Lee JM, Kim Y, Chin Y-W, Jee J-G, Keum Y-S, Jeong Y-J (2012) Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 22(12):4049–4054. https://doi.org/10.1016/j.bmcl.2012.04.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Musarra-Pizzo M, Ginestra G, Smeriglio A, Pennisi R, Sciortino MT, Mandalari G (2019) The antimicrobial and antiviral activity of polyphenols from Almond (Prunus dulcis L.) skin. Nutrients 11(10):2355. https://doi.org/10.3390/nu11102355

    Article  CAS  PubMed Central  Google Scholar 

  56. Inokuchi J, Okabe H, Yamauchi T, Nagamatsu A, Nonaka G, Nishioka I (1986) Antihypertensive substance in seeds of Areca catechu L. Life Sci 38(15):1375–1382. https://doi.org/10.1016/0024-3205(86)90470-4

    Article  CAS  PubMed  Google Scholar 

  57. Rege A, Chowdhary AS (2014) Evaluation of Ocimum sanctum and Tinospora cordifolia as probable HIV protease inhibitors. Int J of Pharm Sci Rev Res 25:315–318

    Google Scholar 

  58. Ye XY, Ng TB, Tsang PW, Wang J (2001) Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. J Protein Chem 20(5):367–375

    Article  CAS  PubMed  Google Scholar 

  59. Hossan MS, Fatima A, Rahmatullah M, Khoo T, Nissapatorn V, Galochkina A, Slita A, Shtro A, Nikolaeva Y, Zarubaev V, Wiart C (2018) Antiviral activity of Embelia ribes Burm. f. against influenza virus in vitro. Arch Virol 163(8):2121–2131. https://doi.org/10.1007/s00705-018-3842-6

    Article  CAS  PubMed  Google Scholar 

  60. Yu Y-B (2004) The extracts of Solanum nigrum L for inhibitory effects on HIV-1 and its essential enzymes. Korean J Orient Med Prescr 10(1):119–126

    Google Scholar 

  61. Chowdhury M, Shahid M, Kashem M (2020) Scope of natural plant extract to deactivate COVID-19. [Preprint]. https://doi.org/10.21203/rs.3.rs-19240/v1

  62. Badam L, Bedekar SS, Sonawane KB, Joshi SP (2002) In vitro antiviral activity of bael (Aegle marmelos Corr) upon human coxsackieviruses B1–B6. J Commun Dis 34(2):88–99

    PubMed  Google Scholar 

  63. Kilianski A, Mielech AM, Deng X, Baker SC (2013) Assessing activity and inhibition of Middle East respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferase-based biosensors. J Virol 87(21):11955–11962. https://doi.org/10.1128/JVI.02105-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hussein G, Miyashiro H, Nakamura N, Hattori M, Kakiuchi N, Shimotohno K (2000) Inhibitory effects of sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother Res 14(7):510–516. https://doi.org/10.1002/1099-1573(200011)14:7%3c510::aid-ptr646%3e3.0.co;2-b

    Article  CAS  PubMed  Google Scholar 

  65. Javed T, Ashfaq UA, Riaz S, Rehman S, Riazuddin S (2011) In-vitro antiviral activity of Solanum nigrum against hepatitis C virus. Virol J 8:26. https://doi.org/10.1186/1743-422X-8-26

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vimalanathan S, Ignacimuthu S, Hudson J (2009) Medicinal plants of Tamil Nadu(Southern India) are a rich source of antiviral activities. Pharm Biol 47:422–429. https://doi.org/10.1080/13880200902800196

    Article  Google Scholar 

  67. Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, **ao PG, Li RS, Tan X (2005) Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 67(1):18–23. https://doi.org/10.1016/j.antiviral.2005.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. San Chang J, Wang KC, Yeh CF, Shieh DE, Chiang LC (2013) Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol 145(1):146–151. https://doi.org/10.1016/j.jep.2012.10.043

    Article  CAS  Google Scholar 

  69. **e F (2016) Broad-spectrum antiviral effect of chebulagic acid and punicalagin on respiratory syncytial virus infection in a BALB/c model. Int J Clin Exp Pathol 9(2):611–619. https://doi.org/10.1186/1471-2180-13-187

    Article  CAS  Google Scholar 

  70. Yadav V, Mishra K, Singh D, Mehrotra S, Singh V (2005) Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol 27(3):485–497. https://doi.org/10.1080/08923970500242244

    Article  CAS  PubMed  Google Scholar 

  71. Im SA, Lee YR, Lee YH, Lee MK, Park YI, Lee S, Kim K, Lee CK (2010) In vivo evidence of the immunomodulatory activity of orally administered Aloe vera gel. Arch Pharm Res 33(3):451–456. https://doi.org/10.1007/s12272-010-0315-1

    Article  CAS  PubMed  Google Scholar 

  72. Badam L, Joshi S, Bedekar S (1999) 'In vitro’antiviral activity of neem (Azadirachta indica. A. Juss) leaf extract against group B Coxsackieviruses. J Commun Dis 31(2):79–90

    CAS  PubMed  Google Scholar 

  73. Lu H (2020) Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 14(1):69–71. https://doi.org/10.5582/bst.2020.01020

    Article  CAS  PubMed  Google Scholar 

  74. Grover A, Agrawal V, Shandilya A, Bisaria VS, Sundar D Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A. In: BMC bioinformatics, 2011. vol 13. BioMed Central, p S22. doi:https://doi.org/10.1186/1471-2105-12-S13-S22

  75. Matsumoto M, Mukai T, Furukawa S, Ohori H (2005) Inhibitory effects of epigallocatechin gallate on the propagation of bovine coronavirus in Madin-Darby bovine kidney cells. Anim Sci J 76(5):507–512. https://doi.org/10.1111/j.1740-0929.2005.00297.x

    Article  CAS  PubMed Central  Google Scholar 

  76. Coppin JP, Xu Y, Chen H, Pan M-H, Ho C-T, Juliani R, Simon JE, Wu Q (2013) Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J Funct Foods 5(4):1892–1899. https://doi.org/10.1016/j.jff.2013.09.010

    Article  CAS  Google Scholar 

  77. Lii CK, Chen HW, Yun WT, Liu KL (2009) Suppressive effects of wild bitter gourd (Momordica charantia Linn. var. abbreviata ser) fruit extracts on inflammatory responses in RAW 2647 macrophages. J Ethnopharmacol 122(2):227–233. https://doi.org/10.1016/j.jep.2009.01.028

    Article  PubMed  Google Scholar 

  78. Chan YS, Wong JH, Fang EF, Pan W, Ng TB (2013) A hemagglutinin from northeast red beans with immunomodulatory activity and anti-proliferative and apoptosis-inducing activities toward tumor cells. Protein Pept Lett 20(10):1159–1169. https://doi.org/10.2174/0929866511320100011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ding X, Zhu F, Gao S (2012) Purification, antitumour and immunomodulatory activity of water-extractable and alkali-extractable polysaccharides from Solanum nigrum L. Food Chem 131(2):677–684. https://doi.org/10.1016/j.foodchem.2011.09.060

    Article  CAS  Google Scholar 

  80. Chen Y, Guo JJ, Healy DP, Zhan S (2007) Effect of integrated traditional Chinese medicine and western medicine on the treatment of severe acute respiratory syndrome: a meta-analysis. Pharmacy Practice 5(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hsu C-H, Hwang K-C, Chao C-L, Chang SG, Ker C-C, Chien L-C, Ho M-S, Lin J-G, Chen Y-M, Chou P (2006) The lesson of supplementary treatment with Chinese medicine on severe laboratory-confirmed SARS patients. Am J Chin Med 34(06):927–935. https://doi.org/10.1142/S0192415X06004405

    Article  PubMed  Google Scholar 

  82. Hsu C-H, Hwang K-C, Chao C-L, Chang SG, Ho M-S, Chou P (2006) Can herbal medicine assist against avian flu? Learning from the experience of using supplementary treatment with Chinese medicine on SARS or SARS-like infectious disease in 2003. J Altern Complement Med 12(6):505–506. https://doi.org/10.1089/acm.2006.12.505

    Article  PubMed  Google Scholar 

  83. Colson P, Rolain J-M, Lagier J-C, Brouqui P, Raoult D (2020) Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2020.105932

    Article  PubMed  PubMed Central  Google Scholar 

  84. New Coronavirus Pneumonia Dignosis and Treatment Program (2020) Office of the National Health and Health Commission Office of the State Administration of Traditional. http://www.nhc.gov.cn/xcs/zhengcwj/202002/8334a8326dd94d329df351d7da8aefc2.shtml. Accessed 3 May 2020

  85. Xu X-W, Wu X-X, Jiang X-G, Xu K-J, Ying L-J, Ma C-L, Li S-B, Wang H-Y, Zhang S, Gao H-N (2020) Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. https://doi.org/10.1136/bmj.m606

    Article  PubMed  PubMed Central  Google Scholar 

  86. Saini A, Gahlawat DK, Chauhan C, Gulia SK, Ganie SA, Archita YSS (2015) Ethnomedicinal uses and phytochemistry of Abutilon indicum (Linn.) Sweet: an overview. J Pharmacogn Phytochem 3(5):66–72

    Google Scholar 

  87. Reddy KN, Pattanaik C, Reddy CS, Raju VS (2007) Traditional knowledge on wild food plants in Andhra Pradesh. Indian J Tradit Know 6(1):223–229

    Google Scholar 

  88. Muzammil S, Manikandan M, Jafar A, Sakthivel P, Geetha S, Malarkodi R (2014) Anti-inflammatory studies on Acalypha indica L. leaves by membrane stabilization. Indian J Nat Prod Resour 5(2):195–197

    Google Scholar 

  89. Amalraj A, Pius A (2015) Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India: an in vitro study. Food Chem 170:430–436. https://doi.org/10.1016/j.foodchem.2014.08.031

    Article  CAS  PubMed  Google Scholar 

  90. Ali A, Mackeen M, Ei-Sharkawyl S, Hamidi J, Ismaili NOR, Ahmad H, Lajisi F (1996) Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. Pertanika J Trop Agric Sci 19:129–136

    Google Scholar 

  91. Baliga MS, Mane PP, Joseph N, Jimmy R, Watson RR, Preedy VR (2013) Chapter 20 - Review on the Protective Effects of the Indigenous Indian Medicinal Plant, Bael (Aegle marmelos Correa), in Gastrointestinal Disorders. In: Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease. Academic Press, San Diego, pp 313–324. doi:https://doi.org/https://doi.org/10.1016/B978-0-12-397154-8.00036-1

  92. Kunkel G (1984) Plants for human consumption. Koeltz Scientific Books, Koenigstein

    Google Scholar 

  93. Touloupakis E, Ghanotakis D (2010) Nutraceutical use of garlic sulfur-containing compounds. Adv Exp Med Biol 698:110–121. https://doi.org/10.1007/978-1-4419-7347-4_9

    Article  CAS  PubMed  Google Scholar 

  94. Tiwari R (2011) Garlic as food, spice and Medicine: as prospective. J Pharm Res 4:1857–1860

    Google Scholar 

  95. Ahlawat KS, Khatkar BS (2011) Processing, food applications and safety of aloe vera products: a review. J Food Sci Technol 48(5):525–533. https://doi.org/10.1007/s13197-011-0229-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sun Z, Yu C, Wang W, Yu G, Zhang T, Zhang L, Zhang J, Wei K Aloe Polysaccharides Inhibit Influenza A Virus Infection-A Promising Natural Anti-flu Drug. Front Microbiol 9 (2338). doi:https://doi.org/10.3389/fmicb.2018.02338

  97. Khan S, Mehmood MH, Ali ANA, Ahmed FS, Dar A, Gilani A-H (2011) Studies on anti-inflammatory and analgesic activities of betel nut in rodents. J Ethnopharmacol 135(3):654–661. https://doi.org/10.1016/j.jep.2011.03.064

    Article  CAS  PubMed  Google Scholar 

  98. Fazal F, Mane PP, Rai MP, Thilakchand KR, Bhat HP, Kamble PS, Palatty PL, Baliga MS (2014) The phytochemistry, traditional uses and pharmacology of Piper betel linn (Betel Leaf): a pan-asiatic medicinal plant. Chin J Integr Med. https://doi.org/10.1007/s11655-013-1334-1

    Article  PubMed  Google Scholar 

  99. Melillo de Magalhães P, Dupont I, Hendrickx A, Joly A, Raas T, Dessy S, Sergent T, Schneider Y (2012) Anti-inflammatory effect and modulation of cytochrome P450 activities by Artemisia annua tea infusions in human intestinal Caco-2 cells. Food Chem 134(2):864–871. https://doi.org/10.1016/j.foodchem.2012.02.195

    Article  CAS  PubMed  Google Scholar 

  100. Agize M (2016) Ethnobotany of spice and condiment plants and the associated indigenous knowledge on management, utilization and conservation of them in and around home gardens in Loma and Gena Bosa Districts ( Weredas ) of Dawuro Zone, Southern Ethiopia. Int J Agric Innov Res 4(3):426–442

    Google Scholar 

  101. Keservani RK, Kesharwani RK, Sharma AK, Vyas N, Chadokar A (2010) Nutritional supplements: an overview. J Curr Pharm Rev Res 1(1):59–75

    Google Scholar 

  102. Yamaguchi K, Honda M, Ikigai H, Hara Y, Shimamura T (2002) Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Res 53(1):19–34. https://doi.org/10.1016/s0166-3542(01)00189-9

    Article  CAS  PubMed  Google Scholar 

  103. Harbowy ME, Balentine DA, Davies AP, Cai Y (1997) Tea Chemistry. Crit Rev Plant Sci 16(5):415–480. https://doi.org/10.1080/07352689709701956

    Article  CAS  Google Scholar 

  104. Lee HJ, Lee YN, Youn HN, Lee DH, Kwak JH, Seong BL, Lee JB, Park SY, Choi IS, Song CS (2012) Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens. Poult Sci 91(1):66–73. https://doi.org/10.3382/ps.2011-01645

    Article  CAS  PubMed  Google Scholar 

  105. Panigrahi G, Yadav A, Mandal P, Tripathi A (2016) Immunomodulatory potential of Rhein, an anthraquinone moiety of Cassia occidentalis seeds. Toxicol Lett. https://doi.org/10.1016/j.toxlet.2016.01.006

    Article  PubMed  Google Scholar 

  106. Manikandaselvi S, Vadivel V, Brindha P (2016) Studies on physicochemical and nutritional properties of aerial parts of Cassia occidentalis L. J Food Drug Anal 24(3):508–515

    Article  CAS  PubMed  Google Scholar 

  107. Ibrikci H, Knewtson SJB, Grusak MA (2003) Chickpea leaves as a vegetable green for humans: evaluation of mineral composition. J Sci Food Agric 83(9):945–950. https://doi.org/10.1002/jsfa.1427

    Article  CAS  Google Scholar 

  108. Zhang GB, Tian LQ, Li YM, Liao YF, Li J, Bing FH (2013) Protective effect of homonojirimycin from Commelina communis (dayflower) on influenza virus infection in mice. Phytomedicine 20(11):964–958. https://doi.org/10.1016/j.phymed.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  109. Britta MO, Ho Thi T, Hoang Nghia D, Nguyen Nhut Xuan D (2003) Food, feed or medicine: the multiple functions of edible wild plants in Vietnam. Econ Bot 57(1):103–117. https://doi.org/10.1663/0013-0001

    Article  Google Scholar 

  110. Obata K, Kojima T, Masaki T, Okabayashi T, Yokota S, Hirakawa S, Nomura K, Takasawa A, Murata M, Tanaka S, Fuchimoto J, Fujii N, Tsutsumi H, Himi T, Sawada N (2013) Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells. PLoS ONE 8(9):e70225. https://doi.org/10.1371/journal.pone.0070225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Prasad S, Aggarwal BB (2011) Turmeric, the golden spice: from traditional medicine to modern medicine. In: Benzie IFF, Wachtel-Galor S (eds) Herbal medicine: biomolecular and clinical aspects, 2nd edn. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  112. Lattanzio V, Kroon PA, Linsalata V, Cardinali A (2009) Globe artichoke: a functional food and source of nutraceutical ingredients. J Funct Foods 1(2):131–144. https://doi.org/10.1016/j.jff.2009.01.002

    Article  CAS  Google Scholar 

  113. Harish GU, Danapur V, Jain R, Patell VM (2012) Endangered Medicinal Plant Embelia ribes Burm. f.: a review. Pharmacogn J 4(27):6–19. https://doi.org/10.5530/pj.2012.27.2

    Article  Google Scholar 

  114. Baliga MS, Bhat HP, Baliga BRV, Wilson R, Palatty PL (2011) Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): a review. Food Res Int 44(7):1776–1789. https://doi.org/10.1016/j.foodres.2011.02.007

    Article  CAS  Google Scholar 

  115. Sood R, Swarup D, Bhatia S, Kulkarni D, Dey S, Saini M, Dubey S (2012) Antiviral activity of crude extracts of Eugenia jambolana Lam. against highlypathogenic avian influenza (H5N1) virus. Indian J Exp Biol 50(3):179–186

    PubMed  Google Scholar 

  116. Belwal T, Giri L, Bahukhandi A, Tariq M, Kewlani P, Bhatt ID, Rawal RS, Nabavi SM, Silva AS (2019) Chapter 319- Ginkgo biloba. In: Nonvitamin and Nonmineral Nutritional Supplements. Academic Press, pp 241–250. Doi:https://doi.org/10.1016/B978-0-12-812491-8.00035-7

  117. Thakur AK, Raj P (2017) Pharmacological perspective of Glycyrrhiza Glabra Linn.: a mini-review. J Anal Pharm Res 5(5):156. https://doi.org/10.15406/japlr.2017.05.00156

    Article  Google Scholar 

  118. Hayashi H, Sudo H (2009) Economic importance of licorice. Plant Biotechnol 26:101–104. https://doi.org/10.5511/plantbiotechnology.26.101

    Article  CAS  Google Scholar 

  119. Edell D, R.A H (2004) Herbal formulation of Gymnema sylvestre as a dietary aid. United States Patent

  120. Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M (2014) Hibiscus sabdariffa L.: a phytochemical and pharmacological review. Food Chem 165:424–443. https://doi.org/10.1016/j.foodchem.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  121. Baatartsogt T, Bui VN, Trinh DQ, Yamaguchi E, Gronsang D, Thampaisarn R, Ogawa H, Imai K (2016) High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses. J Vet Med Sci 78(9):1405–1411. https://doi.org/10.1292/jvms.16-0124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rajyalakshmi P, Venkatalaxmi K, Venkatalakshmamma K, Jyothsna Y, Balachandramani Devi K, Suneetha V (2001) Total carotenoid and beta-carotene contents of forest green leafy vegetables consumed by tribals of south India. Plant Foods Hum Nutr 56(3):225–238. https://doi.org/10.1023/a:1011125232097

    Article  CAS  PubMed  Google Scholar 

  123. Costa H, Ronchi S, Brasil G, Nascimento A, Lima E, Scherer R, Romão W, Boëchat G, Lenz D, Fronza M, Bissoli N, Endringer D, Andrade T (2015) Phytochemical and in vitro and in vivo biological investigation on the antihypertensive activity of mango leaves (Mangifera indica L.). Ther Adv Cardiovasc Dis 9(5):244–256. https://doi.org/10.1177/1753944715572958

    Article  CAS  PubMed  Google Scholar 

  124. MacLeod AJ, de Troconis NG (1982) Volatile flavour components of mango fruit. Phytochemistry 21(10):2523–2526. https://doi.org/10.1016/0031-9422(82)85249-7

    Article  CAS  Google Scholar 

  125. Morton JF (1967) The balsam pear- an edible, medicinal and toxic plant. Econ Bot 21(1):57–68. https://doi.org/10.1007/bf02897176

    Article  CAS  Google Scholar 

  126. Lee-Huang S, Huang PL, Chen HC, Huang PL, Bourinbaiar A, Huang HI, Kung HF (1995) Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene 161(2):151–156. https://doi.org/10.1016/0378-1119(95)00186-a

    Article  CAS  PubMed  Google Scholar 

  127. Sánchez-Machado D, Núñez-Gastélum JA, Reyes Moreno C, Ramirez-Wong B, López-Cervantes J (2010) Nutritional quality of edible parts of Moringa oleifera. Food Anal Methods 3(3):175–180. https://doi.org/10.1007/s12161-009-9106-z

    Article  Google Scholar 

  128. Nworu EL, Esimone CO, Ezeifeka CS, Okoye GO (2015) Extracts of Moringa oleifera Lam. showing inhibitory activity against early steps in the infectivity of HIV-1 lentiviral particles in a viral vector-based screening. Afr J Biotechnol 12:4866–4873. https://doi.org/10.5897/AJB2013.12343

    Article  Google Scholar 

  129. Rawat S, Jugran A, Giri L, Bhatt I, Rawal R (2011) Assessment of antioxidant properties in fruits of Myrica esculenta: a popular wild edible species in indian Himalayan region. Evid Based Complement Alternat Med 2011:8. https://doi.org/10.1093/ecam/neq055

    Article  Google Scholar 

  130. Makdoh K, Lynser MB, Pala KHM (2014) Marketing of indigenous fruits: a source of income among Khasi Women of Meghalaya, North East India. J Agric Sci 5:1–9. https://doi.org/10.1080/09766898.2014.11884707

    Article  Google Scholar 

  131. Subratti A, Lalgee LJ, Jalsa NK (2019) Efficient extraction of black cumin (Nigella sativa L.) seed oil containing thymol, using liquefied dimethyl ether (DME). J Food Process Preserv 43(4):13913

    Article  Google Scholar 

  132. Dubey PN, Singh B, Mishra B, Kant K, Solanki R (2016) Nigella (Nigella sativa): a high value seed spice with immense medicinal potential. Indian J Agric Sci 86:967–979

    CAS  Google Scholar 

  133. Cohen MM (2014) Tulsi-Ocimum sanctum: A herb for all reasons. J Ayurveda Integr Med 5(4):251–259. https://doi.org/10.4103/0975-9476.146554

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N (2012) Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.): a review. Int J Mol Sci 13(3):3291–3340. https://doi.org/10.3390/ijms13033291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)-model food legumes. Plant Soil 252:55–128. https://doi.org/10.1023/A:1024146710611

    Article  CAS  Google Scholar 

  136. Ihantola-Vormisto A, Summanen J, Kankaanranta H, Vuorela H, Asmawi M, Moilanen E (1998) Anti-inflammatory activity of extracts from leaves of Phyllanthus emblica. Planta Med 63(6):518–524. https://doi.org/10.1055/s-2006-957754

    Article  Google Scholar 

  137. Morton JF (1960) The emblic (Phyllunthus emblica L.). Econ Bot 14:119–128

    Article  CAS  Google Scholar 

  138. Estari M, Venkanna L, Sripriya D, Lalitha R (2012) Human Immunodeficiency Virus (HIV-1) reverse transcriptase inhibitory activity of Phyllanthus emblica plant extract. Biol Med 4(4):178–182

    Google Scholar 

  139. Al-Maiman SA, Ahmad D (2002) Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit maturation. Food Chem 76(4):437–441. https://doi.org/10.1016/S0308-8146(01)00301-6

    Article  CAS  Google Scholar 

  140. Li Z, Wang K, Zheng J, Cheung FSG, Chan T, Zhu L, Zhou F (2014) Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters. Pharm Biol 52(12):1510–1517

    Article  CAS  PubMed  Google Scholar 

  141. Moradi MT, Karimi A, Shahrani M, Hashemi L, Ghaffari-Goosheh MS (2019) Anti-Influenza virus activity and phenolic content of pomegranate (Punica granatum L.) peel extract and fractions. Avicenna J Med Biotechnol 11(4):285–291

    PubMed  PubMed Central  Google Scholar 

  142. Kuete V (2014) Chapter 22-physical, hematological, and histopathological signs of toxicity induced by African medicinal plants. In: Toxicological Survey of African Medicinal Plants. Elsevier, pp 635–657. https://doi.org/https://doi.org/10.1016/B978-0-12-800018-2.00022-4

  143. Tavares IMdC, Lago-Vanzela ES, Rebello LPG, Ramos AM, Gómez-Alonso S, García-Romero E, Da-Silva R, Hermosín-Gutiérrez I (2016) Comprehensive study of the phenolic composition of the edible parts of jambolan fruit (Syzygium cumini (L.) Skeels). Food Res Int 82:1–13. https://doi.org/10.1016/j.foodres.2016.01.014

    Article  CAS  Google Scholar 

  144. Yang MH, Ali Z, Khan IA, Khan SI (2014) Anti-inflammatory activity of constituents isolated from Terminalia chebula. Nat Prod Commun 9(7):965–968

    CAS  PubMed  Google Scholar 

  145. Barthakur NN, Arnold NP (1991) Nutritive value of the chebulic myrobalan (Terminalia chebula Retz) and its potential as a food source. Food Chem 40(2):213–219. https://doi.org/10.1016/0308-8146(91)90105-W

    Article  CAS  Google Scholar 

  146. Korani M, Jamshidi M (2020) The effect of aqueous extract of Trachyspermum ammi seeds and ibuprofen on inflammatory gene expression in the cartilage tissue of rats with collagen-induced arthritis. J Inflamm Res 13:133–139. https://doi.org/10.2147/jir.s236242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Srivastava KC (1988) Extract of a spice-Omum (Trachyspermum ammi)-shows antiaggregatory effects and alters arachidonic acid metabolism in human platelets. Prostaglandins Leukot Essent Fatty Acids 33(1):1–6. https://doi.org/10.1016/0952-3278(88)90115-9

    Article  CAS  PubMed  Google Scholar 

  148. Cai Z, Zhang G, Tang B, Liu Y, Fu X, Zhang X (2015) Promising anti-influenza properties of active constituent of Withania somnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: computational study. Cell Biochem Biophys 72(3):727–739. https://doi.org/10.1007/s12013-015-0524-9

    Article  CAS  PubMed  Google Scholar 

  149. Palliyaguru DL, Singh SV, Kensler TW (2016) Withania somnifera: From prevention to treatment of cancer. Mol Nutr Food Res 60(6):1342–1353. https://doi.org/10.1002/mnfr.201500756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC (2013) Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol 145(1):146–151. https://doi.org/10.1016/j.jep.2012.10.043

    Article  CAS  PubMed  Google Scholar 

  151. Semwal RB, Semwal DK, Combrinck S, Viljoen AM (2015) Gingerols and shogaols: important nutraceutical principles from ginger. Phytochemistry 117:554–568. https://doi.org/10.1016/j.phytochem.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  152. Nair KPP (2013) Chapter 26- Ginger as a Spice and Flavorant. In: The Agronomy and Economy of Turmeric and Ginger. Elsevier, Oxford, pp 497–510. doi:https://doi.org/10.1007/978-3-030-29189-1_26

  153. Tripathi P, Chauhan NS, Patel JR (2012) Anti-inflammatory activity of Abutilon indicum extract. Nat Prod Res 26(17):1659–1661. https://doi.org/10.1080/14786419.2011.616508

    Article  CAS  PubMed  Google Scholar 

  154. Dashputre N, Naikwade N (2010) Immunomodulatory Activity of Abutilon Indicum linn on Albino Mice. Int J Pharm Sci Res 1(3):178–184

    Google Scholar 

  155. Bhuvaneswari K, Michael D (2000) Immunomodulation by leaf extract of Acalypha indica Linn in Oreochromis mossambicus (Peters). Hydrobiologia 430(1):113–120

    Google Scholar 

  156. Benni JM, Jayanthi MK, Suresha RN (2011) Evaluation of the anti-inflammatory activity of Aegle marmelos (Bilwa) root. Indian J Pharmacol 43(4):393–397. https://doi.org/10.4103/0253-7613.83108

    Article  PubMed  PubMed Central  Google Scholar 

  157. Govinda HV, Asdaq SMB (2011) Immunomodulatory potential of methanol extract of Aegle marmelos in animals. Indian J Pharm Sci 73(2):235–240. https://doi.org/10.4103/0250-474x.91571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kim JJ, Jiang J, Shim DW, Kwon SC, Kim TJ, Ye SK, Kim MK, Shin YK, Koppula S, Kang TB, Choi DK, Lee KH (2012) Anti-inflammatory and anti-allergic effects of Agrimonia pilosa Ledeb extract on murine cell lines and OVA-induced airway inflammation. J Ethnopharmacol 140(2):213–221. https://doi.org/10.1016/j.jep.2011.12.035

    Article  PubMed  Google Scholar 

  159. Lee DY, Li H, Lim HJ, Lee HJ, Jeon R, Ryu J-H (2012) Anti-inflammatory activity of sulfur-containing compounds from garlic. J Med Food 15(11):992–999. https://doi.org/10.1089/jmf.2012.2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fallah-Rostami F, Tabari MA, Esfandiari B, Aghajanzadeh H, Behzadi MY (2013) Immunomodulatory activity of aged garlic extract against implanted fibrosarcoma tumor in mice. N Am J Med Sci 5(3):207–212. https://doi.org/10.4103/1947-2714.109191

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ried K, Fakler P (2014) Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Integr Blood Press Control 7:71–82. https://doi.org/10.2147/ibpc.s51434

    Article  PubMed  PubMed Central  Google Scholar 

  162. Vázquez B, Avila G, Segura D, Escalante B (1996) Antiinflammatory activity of extracts from Aloe vera gel. J Ethnopharmacol 55(1):69–75. https://doi.org/10.1016/s0378-8741(96)01476-6

    Article  PubMed  Google Scholar 

  163. Farahnejad Z, Ghazanfari T, Yaraee R (2011) Immunomodulatory effects of Aloe vera and its fractions on response of macrophages against Candida albicans. Immunopharmacol Immunotoxicol 33(4):676–681. https://doi.org/10.3109/08923973.2011.560158

    Article  PubMed  Google Scholar 

  164. Yao W, Wang F, Wang H (2016) Immunomodulation of artemisinin and its derivatives. Sci Bull. https://doi.org/10.1007/s11434-016-1105-z

    Article  Google Scholar 

  165. Chattopadhyay RR (1998) Possible biochemical mode of anti-inflammatory action of Azadirachta indica A. Juss. in rats. Indian J Exp Biol 36(4):418–420

    CAS  PubMed  Google Scholar 

  166. Upadhyay SN, Dhawan S, Garg S, Talwar GP (1992) Immunomodulatory effects of neem (Azadirachta indica) oil. Int J Immunopharmacol 14(7):1187–1193. https://doi.org/10.1016/0192-0561(92)90054-o

    Article  CAS  PubMed  Google Scholar 

  167. Arise RO, Acho MA, Yekeen AA, Omokanye IA, Sunday-Nwaso EO, Akiode OS, Malomo SO (2019) Kinetics of angiotensin-1 converting enzyme inhibition and antioxidative properties of Azadirachta indica seed protein hydrolysates. Heliyon 5(5):e01747. https://doi.org/10.1016/j.heliyon.2019.e01747

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chen BT, Li WX, He RR, Li YF, Tsoi B, Zhai YJ, Kurihara H (2012) Anti-inflammatory effects of a polyphenols-rich extract from tea (Camellia sinensis) flowers in acute and chronic mice models. Oxid Med Cell Longev 2012:537923. https://doi.org/10.1155/2012/537923

    Article  PubMed  PubMed Central  Google Scholar 

  169. Rahayu RP, Prasetyo RA, Purwanto DA, Kresnoadi U, Iskandar RPD, Rubianto M (2018) The immunomodulatory effect of green tea (Camellia sinensis) leaves extract on immunocompromised Wistar rats infected by Candida albicans. Vet World 11(6):765–770. https://doi.org/10.14202/vetworld.2018.765-770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dong J, Xu X, Liang Y, Head R, Bennett L (2011) Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method. Food Funct 2(6):310–319. https://doi.org/10.1016/j.foodchem.2011.09.060

    Article  CAS  PubMed  Google Scholar 

  171. Gopakumar S, Latha P, Shine VJ, Anuja G, Suja S, ShyamaPeriyaRajasekharan SSPS (2010) Anti-allergic, anti-inflammatory and anti-lipidperoxidant effects of Cassia occidentalis Linn. Indian J Exp Biol 48(5):494–498

    Google Scholar 

  172. Doppalapudi SC, Sandya L, Reddy Y, Nagarjuna S, Shafeen S (2012) Anti-inflammatory activity of Cicer arietinum seed extracts. Asian J Pharm Clin Res 5:64–68

    Google Scholar 

  173. Sathyanarayana S, Kumar P, Prashanth H (2019) Pectic polysaccharides have relatively potent immunomodulatory activity compared to their hydrolysates from chickpea (Cicer arietinum L.) husk. Indian J Nutr Diet 56(2):94. https://doi.org/10.21048/ijnd.2019.56.2.22687

    Article  Google Scholar 

  174. Bhagyawant SS, Narvekar DT, Gupta N, Bhadkaria A, Gautam AK, Srivastava N (2019) Chickpea (Cicer arietinum L.) lectin exhibit Inhibition of ACE-I, α-amylase and α-glucosidase activity. Protein Pept Lett 26(7):494–501. https://doi.org/10.2174/0929866526666190327130037

    Article  CAS  PubMed  Google Scholar 

  175. Mensah AY, Mireku EA, Damoah AO, Amponsah IK (2014) Anti-inflammatory and antioxidant activities of Commelina diffusa (Commelinaceae). World J Pharm Sci 2(10):1159–1165

    Google Scholar 

  176. Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14(2):141–153

    PubMed  Google Scholar 

  177. Chandrasekaran CV, Sundarajan K, Edwin JR, Gururaja GM, Mundkinajeddu D, Agarwal A (2013) Immune-stimulatory and anti-inflammatory activities of Curcuma longa extract and its polysaccharide fraction. J Pharm Pharmacogn Res 5(2):71–79. https://doi.org/10.4103/0974-8490.110527

    Article  CAS  Google Scholar 

  178. Lekshmi PC, Arimboor R, Nisha VM, Menon AN, Raghu KG (2014) In vitro antidiabetic and inhibitory potential of turmeric (Curcuma longa L) rhizome against cellular and LDL oxidation and angiotensin converting enzyme. Int J Food Sci Technol 51(12):3910–3917. https://doi.org/10.1007/s13197-013-0953-7

    Article  CAS  Google Scholar 

  179. Ben Salem M, Affes H, Athmouni K, Ksouda K, Dhouibi R, Sahnoun Z, Hammami S, Zeghal KM (2017) Chemicals compositions, antioxidant and anti-inflammatory activity of Cynara scolymus leaves extracts, and analysis of major bioactive polyphenols by HPLC. Evid Based Complement Alternat Med 2017:4951937. https://doi.org/10.1155/2017/4951937

    Article  PubMed  PubMed Central  Google Scholar 

  180. Chitra M, Sukumar E, Suja V, Devi CSS (1994) Antitumor, anti-inflammatory and analgesic property of Embelin, a plant product. Chemotherapy 40(2):109–113. https://doi.org/10.1159/000239181

    Article  CAS  PubMed  Google Scholar 

  181. Sethi J, Singh J (2015) Role of medicinal plants as immunostimulants in health and disease. Ann Med Chem Res 1(2):1009. https://doi.org/10.1016/j.fsi.2017.05.034

    Article  CAS  Google Scholar 

  182. Kota P, Prasad PD, Rao AN, Reddy PD, Abhinay G (2010) Anti-inflammatory activity of Eugenia Jambolana in Albino rats. Int J Pharma Bio Sci 1(4):435–438

    Google Scholar 

  183. Mastan SK, Saraseeruha A, Gourishankar V, Chaitanya G, Raghunandan N, Reddy GA, Eswar Kumar KE (2008) Immunomodulatory activity of methanolic extract of Syzygium cumini seeds. Pharmacology online 3:895–903

    Google Scholar 

  184. Syama HP, Arya AD, Dhanya R, Nisha P, Sundaresan A, Jacob E, Jayamurthy P (2017) Quantification of phenolics in Syzygium cumini seed and their modulatory role on tertiary butyl-hydrogen peroxide-induced oxidative stress in H9c2 cell lines and key enzymes in cardioprotection. J Food Sci Technol 54(7):2115–2125. https://doi.org/10.1007/s13197-017-2651-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kaur S, Sharma N, Nehru B (2018) Anti-inflammatory effects of Ginkgo biloba extract against trimethyltin-induced hippocampal neuronal injury. Inflammopharmacology 26(1):87–104. https://doi.org/10.1007/s10787-017-0396-2

    Article  CAS  PubMed  Google Scholar 

  186. Xu AH, Ren L, Zheng YY, Chen HS (2008) Immunomodulatory effect of Ginkgo biloba exocarp polysaccharides on immunosuppressive mice induced by cyclophosphamide. Chin J Pharmacol Toxicol 22(1):69–72

    Google Scholar 

  187. Ma FF, Wang H, Wei CK, Thakur K, Wei ZJ, Jiang L (2018) Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: purification purification, inhibitory kinetic and mechanism. Front Pharmacol 9:1579. https://doi.org/10.3389/fphar.2018.01579

    Article  CAS  PubMed  Google Scholar 

  188. Frattaruolo L, Carullo G, Brindisi M, Mazzotta S, Bellissimo L, Rago V, Curcio R, Dolce V, Aiello F, Cappello AR (2019) Antioxidant and anti-inflammatory activities of flavanones from Glycyrrhiza glabra L. (licorice) leaf phytocomplexes: identification of licoflavanone as a modulator of NF-kB/MAPK pathway. Antioxidants. PLoS ONE 8(6):186. https://doi.org/10.3390/antiox8060186

    Article  CAS  Google Scholar 

  189. Mitra Mazumder P, Pattnayak S, Parvani H, Sasmal D, Rathinavelusamy P (2012) Evaluation of immunomodulatory activity of Glycyrhiza glabra L. roots in combination with zing. Asian Pac J Trop Biomed 2(1):S15–S20. https://doi.org/10.1016/S2221-1691(12)60122-1

    Article  Google Scholar 

  190. Malik J, Manvi FV, Alagawadi KR, Noolvi M (2008) Evaluation of anti-inflammatory activity of Gymnema sylvestre leaves extract in rats. Int J Green Pharm. https://doi.org/10.4103/0973-8258.41184

    Article  Google Scholar 

  191. Singh VK, Dwivedi P, Chaudhary BR, Singh R (2015) Immunomodulatory effect of gymnema sylvestre (RBr). leaf extract: an in vitro study in rat model. PLoS ONE 10(10):0139631. https://doi.org/10.1371/journal.pone.0139631

    Article  CAS  Google Scholar 

  192. Bayani GFE, Marpaung NLE, Simorangkir DAS, Sianipar IR, Ibrahim N, Kartinah NT, Mansur IG, Purba JS, Ilyas EII (2018) Anti-inflammatory effects of Hibiscus Sabdariffa Linn. on the IL-1β/IL-1ra ratio in plasma and hippocampus of overtrained rats and correlation with spatial memory. Kobe J Med Sci 64(2):E73–E83

    PubMed  Google Scholar 

  193. Fakeye TO, Pal A, Bawankule DU, Khanuja SP (2008) Immunomodulatory effect of extracts of Hibiscus sabdariffa L. (Family Malvaceae) in a mouse model. Phytother Res 22(5):664–648. https://doi.org/10.1002/ptr.2370

    Article  PubMed  Google Scholar 

  194. Ojeda D, Jiménez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L (2010) Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. J Ethnopharmacol 127(1):7–10. https://doi.org/10.1016/j.jep.2009.09.059

    Article  CAS  PubMed  Google Scholar 

  195. Patil N, Kotian R, Reddy S, Nayak V, Bairy L, Parida A, Malalur C (2014) Evaluation of anti-inflammatory activity of alcoholic extract of leaves of Leucas Aspera in albino rats. Int J Pharm Pharm Sci 6(2)

  196. Augustine B, Dash S, Lahkar M, Amara V, Samudrala P, Thomas J (2014) Evaluation of immunomodulatory activity of ethyl acetate extract of Leucas aspera in Swiss albino mice. Int J Green Pharm 8(2):84. https://doi.org/10.4103/0973-8258.129574

    Article  CAS  Google Scholar 

  197. Knödler M, Jr C, Wenzig EM, Bauer R, Lacorn M, Beifuss U, Carle R, Schieber A (2008) Anti-inflammatory 5-(11’Z-heptadecenyl)- and 5-(8’Z,11’Z-heptadecadienyl)-resorcinols from mango (Mangifera indica L.) peels. Phytochemistry 69(4):988–993. https://doi.org/10.1016/j.phytochem.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  198. Makare N, Bodhankar S, Rangari V (2001) Immunomodulatory activity of alcoholic extract of Mangifera indica L. in mice. J Ethnopharmacol 78(2):133–137. https://doi.org/10.1016/S0378-8741(01)00326-9

    Article  CAS  PubMed  Google Scholar 

  199. Juvekar A, Hule A, Sakat S, Chaughule V (2009) In vitro and in vivo evaluation of immunomodulatory activity of methanol extract of Momordica charantia fruits. Drug Invent Today 1(2):89–94

    Google Scholar 

  200. Priyanto AD, Doerksen RJ, Chang CI, Sung W-C, Widjanarko SB, Kusnadi J, Lin YC, Wang TC, Hsu JL (2015) Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J Proteom 128:424–435. https://doi.org/10.1016/j.jprot.2015.08.018

    Article  CAS  Google Scholar 

  201. Anudeep S, Prasanna VK, Adya SM, Radha C (2016) Characterization of soluble dietary fiber from Moringa oleifera seeds and its immunomodulatory effects. Int J Biol Macromol 91:656–662. https://doi.org/10.1016/j.ijbiomac.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  202. Abdulazeez A, Ajiboye O, Wudil A, Abubakar H (2016) Partial purification and characterization of angiotensin converting enzyme inhibitory alkaloids and flavonoids from the leaves and seeds of Moringa oleifera. J adv biol biotechnol 5:1–11. https://doi.org/10.9734/jabb/2016/21974

    Article  Google Scholar 

  203. Patel KG, Rao NJ, Gajera VG, Bhatt PA, Patel KV, Gandhi TR (2010) Anti-allergic activity of stem bark of Myrica esculenta Buch-Ham (Myricaceae). J Young Pharm 2(1):74–78. https://doi.org/10.4103/0975-1483.62219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Nguyen XN, Phan VK, Chau VM, Bui HT, Nguyen XC, Vu KT, le Hoang TA, Jo SH, Jang HD, Kwon YI, Kim YH (2010) A new monoterpenoid glycoside from Myrica esculenta and the inhibition of Angiotensin I-converting enzyme. Chem Pharm Bull 58:1408–1410. https://doi.org/10.1248/cpb.58.1408

    Article  CAS  Google Scholar 

  205. Ikhsan M, Hiedayati N, Maeyama K, Nurwidya F (2018) Nigella sativa as an anti-inflammatory agent in asthma. BMC Res Notes 11(1):744–744. https://doi.org/10.1186/s13104-018-3858-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Boskabady MH, Keyhanmanesh R, Khameneh S, Doostdar Y, Khakzad MR (2011) Potential immunomodulation effect of the extract of Nigella sativa on ovalbumin sensitized guinea pigs. J Zhejiang Univ Sci B 12(3):201–209. https://doi.org/10.1631/jzus.B1000163

    Article  PubMed  PubMed Central  Google Scholar 

  207. Sutopo CCY, Sutrisno A, Wang LF, Hsu JL (2020) Identification of a potent Angiotensin-I converting enzyme inhibitory peptide from Black cumin seed hydrolysate using orthogonal bioassay-guided fractionations coupled with in silico screening. Process Biochem. https://doi.org/10.1016/j.procbio.2020.02.010

    Article  Google Scholar 

  208. Kalabharathi HL, Suresha RN, Pragathi B, Pushpa VH, Satish AM (2011) Anti inflammatory activity of fresh tulsi leaves (Ocimum Sanctum) in albino rats. Int J Pharma Bio Sci 2(4):45–50

    Google Scholar 

  209. Mediratta PK, Sharma KK, Singh S (2002) Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J Ethnopharmacol 80(1):15–20. https://doi.org/10.1016/s0378-8741(01)00373-7

    Article  CAS  PubMed  Google Scholar 

  210. Chaudhary S, Mukherjee P, Maity N, Nema N, Bhadra S, Saha BP (2014) Ocimum sanctum L. a potential angiotensin converting enzyme (ACE) inhibitor useful in hypertension. Indian J Nat Prod Resour 5(1):83–87

    CAS  Google Scholar 

  211. Song C, Hong YH, Park JG, Kim HG, Jeong D, Oh J, Sung G-H, Hossain MA, Taamalli A, Kim JH, Kim J-H, Cho JY (2019) Suppression of Src and Syk in the NF-ÎoB signaling pathway by Olea europaea methanol extract is leading to its anti-inflammatory effects. J Ethnopharmacol 235:38–46. https://doi.org/10.1016/j.jep.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  212. Vezza T, Algieri F, Rodríguez-Nogales A, Garrido-Mesa J, Utrilla MP, Talhaoui N, Gómez-Caravaca AM, Segura-Carretero A, Rodríguez-Cabezas ME, Monteleone G, Gálvez J (2017) Immunomodulatory properties of Olea europaea leaf extract in intestinal inflammation. Mol Nutr Food Res 61(10)

  213. Hansen K, Adsersen A, Christensen SB, Jensen SR, Nyman U, Smitt UW (1996) Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine 2(4):319–325. https://doi.org/10.1016/S0944-7113(96)80076-6

    Article  CAS  PubMed  Google Scholar 

  214. Oomah BD, Corbé A, Balasubramanian P (2010) Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. J Agric Food Chem 58(14):8225–8230. https://doi.org/10.1021/jf1011193

    Article  CAS  PubMed  Google Scholar 

  215. Tagliazucchi D, Martini S, Bellesia A, Conte A (2015) Identification of ACE-inhibitory peptides from Phaseolus vulgaris after in vitro gastrointestinal digestion. Int J Food Sci Nutr 66(7):774–782. https://doi.org/10.3109/09637486.2015.1088940

    Article  CAS  PubMed  Google Scholar 

  216. Suresh K, Vasudevan DM (1994) Augmentation of murine natural killer cell and antibody dependent cellular cytotoxicity activities by Phyllanthus emblica, a new immunomodulator. J Ethnopharmacol 44:55–60. https://doi.org/10.1016/0378-8741(94)90099-x

    Article  CAS  PubMed  Google Scholar 

  217. Lee CJ, Chen LG, Liang WL, Wang CC (2010) Anti-inflammatory effects of Punica granatum Linne in vitro and in vivo. Food Chem 118(2):315–322. https://doi.org/10.1016/j.foodchem.2009.04.123

    Article  CAS  Google Scholar 

  218. Gracious Ross R, Selvasubramanian S, Jayasundar S (2001) Immunomodulatory activity of Punica granatum in rabbits: a preliminary study. J Ethnopharmacol 78(1):85–87. https://doi.org/10.1016/s0378-8741(01)00287-2

    Article  CAS  PubMed  Google Scholar 

  219. Wang Y, **ang L, Yi X, He X (2017) Potential anti-inflammatory steroidal saponins from the berries of Solanum nigrum L. (European Black Nightshade). J Agric Food Chem 65(21):4262–4272. https://doi.org/10.1021/acs.jafc.7b00985

    Article  CAS  PubMed  Google Scholar 

  220. Li J, Li QW, Gao DW, Han ZS, Lu WZ (2009) Antitumor and immunomodulating effects of polysaccharides isolated from Solanum nigrum Linne. Phytother Res 23(11):1524–1530. https://doi.org/10.1002/ptr.2769

    Article  CAS  PubMed  Google Scholar 

  221. Chaudhuri AKN, Pal S, Gomes A, Bhattacharya S (1990) Anti-inflammatory and related actions of Syzygium cuminii seed extract. Phytother Res 4(1):5–10. https://doi.org/10.1002/ptr.2650040103

    Article  Google Scholar 

  222. Shivaprasad HN, Kharya MD, Rana AC, Mohan S (2006) Preliminary immunomodulatory activities of the aqueous extract of Terminalia chebula. Pharm Biol 44(1):32–34. https://doi.org/10.1080/13880200500530542

    Article  Google Scholar 

  223. Sornwatana T, Bangphoomi K, Roytrakul S, Wetprasit N, Choowongkomon K, Ratanapo S (2015) Chebulin: Terminalia chebula Retz. fruit-derived peptide with angiotensin-I-converting enzyme inhibitory activity. Biotechnol Appl Biochem 62(6):746–753. https://doi.org/10.1002/bab.1321

    Article  CAS  PubMed  Google Scholar 

  224. Shruthi RR, Venkatesh Y, Gudipati M (2017) In vitro immunomodulatory potential of macromolecular components derived from the aqueous extract of ajowan [Trachyspermum ammi (L.) Sprague]. Indian J Tradit Know 16(3):506–513

    Google Scholar 

  225. Gupta A, Singh S (2014) Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats. Pharm Biol 52(3):308–320. https://doi.org/10.1186/s12906-016-1466-5

    Article  CAS  PubMed  Google Scholar 

  226. Davis L, Kuttan G (2000) Immunomodulatory activity of Withania somnifera. J Ethnopharmacol 71(1–2):193–200. https://doi.org/10.1016/s0378-8741(99)00206-8

    Article  CAS  PubMed  Google Scholar 

  227. Ravindran R, Sharma N, Roy S, Thakur A, Ganesh S, Kumar S, Devi J, Rajkumar J (2015) Interaction studies of Withania somnifera’s key metabolite withaferin a with different receptors associated with cardiovascular disease. Curr Comput Aided Drug Des 11(3):212–221. https://doi.org/10.2174/1573409912666151106115848

    Article  CAS  PubMed  Google Scholar 

  228. Funk JL, Frye JB, Oyarzo JN, Chen J, Zhang H, Timmermann BN (2016) Anti-inflammatory effects of the essential oils of ginger (Zingiber officinale Roscoe) in experimental rheumatoid arthritis. Pharmanutrition 4(3):123–131. https://doi.org/10.1016/j.phanu.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Amri M, Touil-Boukoffa C (2016) In vitro anti-hydatic and immunomodulatory effects of ginger and [6]-gingerol. Asian Pac J Trop Med 9(8):749–756. https://doi.org/10.1016/j.apjtm.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  230. Akinyemi A, Ademiluyi A, Oboh G (2014) Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger ( Zingiber officinale ) in rats fed a high cholesterol diet. J Med Food. https://doi.org/10.1089/jmf.2012.0264

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahaveer Dhobi.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, B., Sharma, S., Nair, N. et al. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem 476, 2345–2364 (2021). https://doi.org/10.1007/s11010-021-04084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04084-7

Keywords