Log in

Endothelial retinoblastoma protein reduces abdominal aortic aneurysm development via promoting DHFR/NO pathway-mediated vasoprotection

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is a major cause of global mortality. The proper functioning of the endothelial layer of arteries is crucial to cardiovascular health. Retinoblastoma protein (Rb), encoded by the Rb1 gene, has been shown to offer vasoprotective effects. Herein, we investigated endothelial Rb’s effects on arterial function using an endothelial-specific conditional Rb1 knockout (Rb cKO) mouse model. We found that Rb deficiency reduced dihydrofolate reductase (DHFR) activity and downstream NO production in mouse aortic endothelial cells and blocked arterial vasodilation in an endothelial DHFR-dependent manner. Rb deficiency also increased phenylephrine-triggered arterial vasoconstriction, BP levels, and pathological aortic remodeling without significantly affecting prostanoid synthesis. Employing an angiotensin II (AngII)-stimulated apolipoprotein E knockout (apoE −/−) mice fed a standard, non-atherogenic diet, Rb deficiency increased aortic diameter, stimulated abdominal aortic aneurysm (AAA) development, and reduced survival. These pathological responses to Rb deficiency in AngII-stimulated apoE−/− mice were rescued by DHFR overexpression. Cumulatively, our findings reveal that endothelial Rb positively impacts arterial function by supporting vasoprotective endothelial DHFR/NO pathway activity, leading to reduced AAA development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Joseph P, Leong D, Mckee M, Anand SS, Schwalm J-D, Teo K, Mente A, Yusuf S (2017) Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res 121:677–694

    Article  CAS  PubMed  Google Scholar 

  2. Leong DP, Joseph PG, McKee M, Anand SS, Teo KK, Schwalm J-D, Yusuf S (2017) Reducing the global burden of cardiovascular disease, part 2: prevention and treatment of cardiovascular disease. Circ Res 121:695–710

    Article  CAS  PubMed  Google Scholar 

  3. Gatica D, Chiong M, Lavandero S, Klionsky DJ (2015) Molecular mechanisms of autophagy in the cardiovascular system. Circ Res 116:456–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hua Y, Nair S (2015) Proteases in cardiometabolic diseases: pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta (BBA) 1852:195–208

    Article  CAS  Google Scholar 

  5. Vásquez-Trincado C, García-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594:509–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao J, Xu W, Wang J, Wang K, Li P (2017) The role and molecular mechanism of non-coding RNAs in pathological cardiac remodeling. Int J Mol Sci 18:608

    Article  CAS  PubMed Central  Google Scholar 

  7. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803

    Article  CAS  PubMed  Google Scholar 

  8. Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794

    Article  CAS  PubMed  Google Scholar 

  9. van Hinsbergh VW (2012) Endothelium—role in regulation of coagulation and inflammation. Semin Immunopathol 34(1):93–106

    Article  CAS  PubMed  Google Scholar 

  10. Félétou M (2011) The endothelium, Part I: Multiple functions of the endothelial cells–focus on endothelium-derived vasoactive mediators. In: Granger JP, Neil Granger D (eds) Colloquium series on integrated systems physiology: from molecule to function, vol 3. Morgan & Claypool Life Sciences, San Rafael, pp 1–306

    Google Scholar 

  11. Puddu P, Puddu GM, Zaca F, Muscari A (2000) Endothelial dysfunction in hypertension. Acta Cardiol 55:221–232

    Article  CAS  PubMed  Google Scholar 

  12. Dharmashankar K, Widlansky ME (2010) Vascular endothelial function and hypertension: insights and directions. Curr Hypertens Rep 12:448–455

    Article  PubMed  PubMed Central  Google Scholar 

  13. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317

    Article  CAS  PubMed  Google Scholar 

  14. O’Rourke M (1995) Mechanical principles in arterial disease. Hypertension 26:2–9

    Article  PubMed  Google Scholar 

  15. Boesten LS, Zadelaar ASM, van Nieuwkoop A, Hu L, Jonkers J, van de Water B, Gijbels MJ, van der Made I, de Winther MP, Havekes LM (2006) Macrophage retinoblastoma deficiency leads to enhanced atherosclerosis development in ApoE-deficient mice. FASEB J 20:953–955

    Article  CAS  Google Scholar 

  16. Lee W-H, Shew J-Y, Hong FD, Sery TW, Donoso LA, Young L-J, Bookstein R, Eva Y-HL (1987) The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329:642

    Article  CAS  PubMed  Google Scholar 

  17. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  CAS  PubMed  Google Scholar 

  18. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz LB, Moawad J, Svensson EC, Tufts RL, Meyerson SL, Baunoch D, Leiden JM (1999) Adenoviral-mediated gene transfer of a constitutively active form of the retinoblastoma gene product attenuates neointimal thickening in experimental vein grafts. J Vasc Surg 29:874–883

    Article  CAS  PubMed  Google Scholar 

  20. Pillai S, Kovacs M, Chellappan S (2010) Regulation of vascular endothelial growth factor receptors by Rb and E2F1: role of acetylation. Can Res 70:4931–4940

    Article  CAS  Google Scholar 

  21. Reynolds MR, Lane AN, Robertson B, Kemp S, Liu Y, Hill BG, Dean DC, Clem BF (2014) Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 33:556

    Article  CAS  PubMed  Google Scholar 

  22. Genovese C, Trani D, Caputi M, Claudio P (2006) Cell cycle control and beyond: emerging roles for the retinoblastoma gene family. Oncogene 25:5201

    Article  CAS  PubMed  Google Scholar 

  23. Slansky JE, Li Y, Kaelin WG, Farnham PJ (1993) A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol Cell Biol 13:1610–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H, Li Q, Zhang Y, Liu W, Gu B, Narumi T, Siu KL, Youn JY, Liu P, Yang X (2019) Novel treatment of hypertension by specifically targeting E2F for restoration of endothelial dihydrofolate reductase and eNOS function under oxidative stress. Hypertension 73:179–189

    Article  CAS  PubMed  Google Scholar 

  25. Santhanam AVR, d’Uscio LV, Smith LA, Katusic ZS (2012) Uncoupling of eNOS causes superoxide anion production and impairs NO signaling in the cerebral microvessels of hph-1 mice. J Neurochem 122:1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rhoden A, Speiser J, Geertz B, Uebeler J, Kjestine S, de Wit C, Eschenhagen T (2019) Preserved cardiovascular homeostasis despite blunted acetylcholine-induced dilation in mice with endothelial muscarinic M3 receptor deletion. Acta Physiol 226(1):e13262

    Article  CAS  Google Scholar 

  27. Zuccolo E, Laforenza U, Negri S, Botta L, Berra-Romani R, Faris P, Scarpellino G, Forcaia G, Pellavio G, Sancini G (2019) Muscarinic M5 receptors trigger acetylcholine-induced Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells. J Cell Physiol 234:4540–4562

    Article  CAS  PubMed  Google Scholar 

  28. Tangsucharit P, Takatori S, Zamami Y, Goda M, Pakdeechote P, Kawasaki H, Takayama F (2016) Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries. J pharmacol sci 130:24–32

    Article  CAS  PubMed  Google Scholar 

  29. Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS (2008) Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol 93:141–147

    Article  CAS  PubMed  Google Scholar 

  30. Swierkosz TA, Mitchell JA, Warner TD, Botting RM, Vane JR (1995) Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoids. Br J Pharmacol 114:1335–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aguado A, Rodríguez C, Martínez-Revelles S, Avendaño M, Zhenyukh O, Orriols M, Martínez-González J, Alonso M, Briones A, Dixon D (2015) HuR mediates the synergistic effects of angiotensin II and IL-1β on vascular COX-2 expression and cell migration. Br J Pharmacol 172:3028–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Curci JA, Thompson RW (2004) Adaptive cellular immunity in aortic aneurysms: cause, consequence, or context? J Clin Investig 114:168–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Forsdahl SH, Singh K, Solberg S, Jacobsen BK (2009) Risk factors for abdominal aortic aneurysms. Circulation 119:2202–2208

    Article  PubMed  Google Scholar 

  34. Siu KL, Miao XN, Cai H (2014) Recoupling of eNOS with folic acid prevents abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E null mice. PLoS ONE 9:e88899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao L, Siu KL, Chalupsky K, Nguyen A, Chen P, Weintraub NL, Galis Z, Cai H (2012) Role of uncoupled endothelial nitric oxide synthase in abdominal aortic aneurysm formation: treatment with folic acid. Hypertension 59:158–166

    Article  CAS  PubMed  Google Scholar 

  36. Förstermann U, **a N, Li H (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120:713–735

    Article  CAS  PubMed  Google Scholar 

  37. Martinez-Lemus LA, Hill MA, Meininger GA (2009) The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology 24:45–57

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81760059, 81560060) and The YunLing Scholars and Special Joint Program of Yunnan Province (Grant No. 2018FE001-181). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors

Contributions

YC and DX conceived and designed the study; RK, GLD, and MHZ performed the experimental procedures; LL, JPZ, LHJ, and HRL analyzed the data; LHJ and HRL drafted the manuscript.

Corresponding authors

Correspondence to Lihong Jiang or Hongrong Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lihong Jiang and Hongrong Li are co corresponding authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., **ong, D., Kong, R. et al. Endothelial retinoblastoma protein reduces abdominal aortic aneurysm development via promoting DHFR/NO pathway-mediated vasoprotection. Mol Cell Biochem 460, 29–36 (2019). https://doi.org/10.1007/s11010-019-03567-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03567-y

Keywords

Navigation