Log in

Scalar Tachyons in the de Sitter Universe

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide a construction of a class of local and de Sitter covariant tachyonic quantum fields which exist for discrete negative values of the squared mass parameter and which have no Minkowskian counterpart. These quantum fields satisfy an anomalous non-homogeneous Klein–Gordon equation. The anomaly is a covariant field which can be used to select the physical subspace (of finite co-dimension) where the homogeneous tachyonic field equation holds in the usual form. We show that the model is local and de Sitter invariant on the physical space. Our construction also sheds new light on the massless minimally coupled field, which is a special instance of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feinberg G.: Possibility of faster-than-light particles. Phys. Rev. 159, 1089 (1967)

    Article  ADS  Google Scholar 

  2. Schroer B.: The quantization of 0 >  m 2 field equations. Phys. Rev. D 3, 1764 (1971)

    Article  ADS  Google Scholar 

  3. Nachtmann O.: Dynamische Stabilität im de-Sitter-raum. Österr. Akad. Wiss. Math.-Naturw. Kl. Abt. II 176, 363–379 (1968)

    Google Scholar 

  4. Thirring, W.: Quantum field theory in de Sitter space. Acta Phys. Austriaca suppl. IV, 269 (1967)

  5. Gibbons G.W., Hawking S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  6. Chernikov N.A., Tagirov E.A.: Quantum theory of scalar fields in de Sitter space- time. Ann. Poincare. Phys. Theor. A 9, 109 (1968)

    MATH  MathSciNet  Google Scholar 

  7. Bunch T.S., Davies P.C.W.: Proc. R. Soc. Lond. A 360, 117 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  8. Allen B.: Vacuum states in de Sitter space. Phys. Rev. D 32, 3136 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  9. Bros J., Gazeau J.P., Moschella U.: Quantum field theory in the de Sitter universe. Phys. Rev. Lett. 73, 1746 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Bros J., Moschella U.: Two-point functions and quantum fields in de Sitter universe. Rev. Math. Phys. 8, 327 (1996) ar**v:gr-qc/9511019

    Article  MATH  MathSciNet  Google Scholar 

  11. Dixmier J.: Représentations intégrables du groupe de De Sitter. Bull. Soc. Math. Fr. 89, 9 (1961)

    MATH  MathSciNet  Google Scholar 

  12. Gel’fand I.M., Graev M.I.: Application of the method of horospheres to spectral analysis of functions on real and imaginary Lobachevsky spaces. Trudy Moskov. Mat. Obšč. 11, 243 (1962)

    MATH  MathSciNet  Google Scholar 

  13. Takahashi R.: Sur les représentations unitaires des groups de Lorentz généralisés. Bull. Soc. Math. Fr. 91, 289 (1963)

    MATH  Google Scholar 

  14. Gel’fand I.M., Graev M.I., Vilenkin N.Y.: Generalized Functions: Integral Geometry and Representation Theory, vol. 5. Academic Press, New York (1966)

    Google Scholar 

  15. Molčanov V.F.: Harmonic anlysis on a hyperboloid of one sheet. Soviet Math. Dokl. 7, 1553 (1966)

    Google Scholar 

  16. Faraut, J.: Noyaux sphériques sur un hyperboloïde à une nappe. In: Lecture Notes in Mathematics, vol. 497. Springer-Verlag, Berlin (1975)

  17. Polyakov A.M.: De Sitter space and eternity. Nucl. Phys. B 797, 199 (2008) ar**v:0709.2899 [hep-th]

    MATH  MathSciNet  ADS  Google Scholar 

  18. Polyakov, A.M.: Decay of vacuum energy. ar**v:0912.5503 [hep-th]

  19. Bros, J., Epstein, H., Moschella, U.: Lifetime of a massive particle in a de Sitter universe. JCAP 0802, 003 (2008). Particle decays and stability on the de Sitter universe. e-Print: ar**v:0812.3513 [hep-th]

  20. Bros J., Epstein H., Gaudin M., Moschella U., Pasquier V.: Triangular invariants, three-point functions and particle stability on the de Sitter universe. Commun. Math. Phys. 295, 261 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Bertola M., Corbetta F., Moschella U.: Massless scalar field in two-dimensional de Sitter universe. Prog. Math. 251, 27 (2007) ar**v:math-ph/0609080

    Article  MathSciNet  Google Scholar 

  22. Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.G.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)

    Google Scholar 

  23. Allen B., Folacci A.: The massless minimally coupled scalar field in de Sitter space. Phys. Rev. D 35, 3771 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  24. Bernard D., Folacci A.: Hadamard function, stress tensor and de Sitter space. Phys. Rev. D 34, 2286 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  25. Tadaki S.: Stress tensor in de Sitter space. Prog. Theor. Phys. 80, 654 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  26. Miao, S.P., Tsamis, N.C., Woodard, R.P.: De Sitter breaking through infrared divergences. ar**v:1002.4037 [gr-qc]

  27. Folacci A.: Zero modes, euclideanization and quantization. Phys. Rev. D 46, 2553 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  28. Joung E., Mourad J., Parentani R.: Group theoretical approach to quantum fields in de Sitter space II. The complementary and discrete series. JHEP 09, 30 (2007) ar**v:0707.2907 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Moschella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bros, J., Epstein, H. & Moschella, U. Scalar Tachyons in the de Sitter Universe. Lett Math Phys 93, 203–211 (2010). https://doi.org/10.1007/s11005-010-0406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-010-0406-4

Mathematics Subject Classification (2000)

Keywords

Navigation