Log in

Stochastic Local Interaction Model: An Alternative to Kriging for Massive Datasets

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Classical geostatistical methods face serious computational challenges if they are confronted with large spatial datasets. The stochastic local interaction (SLI) approach does not require matrix inversion for parameter estimation, spatial prediction, and uncertainty estimation. This leads to better scaling of computational complexity and storage requirements with data size than standard (i.e., without size-reducing modifications) kriging. This contribution presents a simplified SLI model that can handle large data. The SLI method constructs a spatial interaction matrix (precision matrix) that adjusts with minimal user input to the data values, their locations, and sampling density variations. The precision matrix involves compact kernel functions which permit the use of sparse matrix methods. It is proved that the precision matrix of the proposed SLI model is strictly positive definite. In addition, parameter estimation based on likelihood maximization is formulated, and computationally relevant properties of the likelihood function are studied. The interpolation performance of the SLI method is investigated and compared with ordinary kriging using (i) synthetic non-Gaussian data and (ii) coal thickness measurements from approximately 11,500 drill holes (Campbell County, Wyoming, USA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79

    Article  Google Scholar 

  • Armstrong M (1998) Basic linear geostatistics. Springer, Berlin

    Book  Google Scholar 

  • Armstrong M, Dowd PA (2013) Geostatistical simulations: proceedings of the geostatistical simulation workshop, Fontainebleau, France, 27–28 May 1993, volume 7 of quantitative geology and geostatistics. Springer, Dordrecht

  • Benndorf J, Dimitrakopoulos R (2018) New efficient methods for conditional simulations of large orebodies. In: Dimitrakopoulos R (ed) Advances in applied strategic mine planning. Springer, Cham, pp 353–370

    Chapter  Google Scholar 

  • Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Chorti A, Hristopulos DT (2008) Non-parametric identification of anisotropic (elliptic) correlations in spatially distributed data sets. IEEE T Signal Process 56(10):4738–4751

    Article  Google Scholar 

  • Christakos G (1992) Random field models in earth sciences. Academic Press, San Diego

    Google Scholar 

  • Cole SR, Chu H, Greenland S (2014) Maximum likelihood, profile likelihood, and penalized likelihood: a primer. Am J Epidemiol 179(2):252–260

    Article  Google Scholar 

  • Cressie N (1993) Spatial statistics. Wiley, New York

    Google Scholar 

  • Cressie N, Hawkins M (1980) Robust estimation of the variogram: I. Math Geol 12(2):115–25

    Article  Google Scholar 

  • Cressie N, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J Roy Stat Soc B 70(1):209–226

    Article  Google Scholar 

  • Dowd PA, Dare-Bryan PC (2007) Planning, designing and optimising production using geostatistical simulation. In: Dimitrakopoulos R (ed) Orebody modelling and strategic mine planning, Carlton, Victoria, Australia: The Australasian Institute of Mining and Metallurgy, Spectrum Series, 2nd edn, pp 363–378

  • Ellis MS (2002) Quality of economically extractable coal beds in the Gillette coal field as compared with other tertiary coal beds in the Powder River Basin, Wyoming and Montana. Technical Report No. 2002-174, U.S. Geological Survey

  • Ellis MS, Flores RM, Ochs AM, Stricker GD, Gunther GL, Rossi GS, Bader LR, Schuenemeyer JH, Power HC (1999) Gillette coalfield, powder river basin: geology, coal quality, and coal resources. Technical report, U.S. Geological Survey Professional Paper 1625-A, Chapter PG

  • Furrer R, Genton MG, Nychka D (2006) Covariance tapering for interpolation of large spatial datasets. J Comput Graph Stat 15(3):502–523

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Heaton MJ, Datta A, Finley AO, Furrer R, Guinness J, Guhaniyogi R, Gerber F, Gramacy RB, Hammerling D, Katzfuss M, Lindgren F (2019) A case study competition among methods for analyzing large spatial data. J Agric Biol Environm Stat 24(3):398–425

    Article  Google Scholar 

  • Hristopulos DT (2003) Spartan Gibbs random field models for geostatistical applications. SIAM I Sci Comput 24(6):2125–2162

    Article  Google Scholar 

  • Hristopulos DT, Elogne S (2007) Analytical properties and covariance functions for a new class of generalized Gibbs random fields. IEEE Trans Inform Theory 53(12):4667–4679

    Article  Google Scholar 

  • Hristopulos DT (2002) New anisotropic covariance models and estimation of anisotropic parameters based on the covariance tensor identity. Stoch Env Res Risk A 16(1):43–62

    Article  Google Scholar 

  • Hristopulos DT (2015a) Covariance functions motivated by spatial random field models with local interactions. Stoch Env Res Risk A 29(3):739–754

    Article  Google Scholar 

  • Hristopulos DT (2015b) Stochastic local interaction (SLI) model: bridging machine learning and geostatistics. Comput Geosci 85(Part B):26–37

    Article  Google Scholar 

  • Hristopulos DT (2020) Random fields for spatial data modeling: a primer for scientists and engineers. Springer, Dordrecht

    Book  Google Scholar 

  • Hristopulos DT, Agou VD (2019) Stochastic local interaction model with sparse precision matrix for space-time interpolation. Spat Stat-Neth:100403

  • Journel AG (1974) Geostatistics for conditional simulation of ore bodies. Econ Geol 69(5):673–687

    Article  Google Scholar 

  • Journel AG (2005) Beyond covariance: the advent of multiple-point geostatistics. In Leuangthong O, Deutsch CV (eds) Geostatistics Banff 2004, volume 14 of quantitative geology and geostatistics. Springer, Dordrecht, pp 225–233

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Journel AG, Kyriakidis PC (2004) Evaluation of mineral reserves: a simulation approach. Oxford University Press, Oxford

    Google Scholar 

  • Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J S Afr I Min Metall 52(6):119–139

    Google Scholar 

  • Lantuéjoul C (2002) Geostatistical simulation: models and algorithms. Springer, Berlin

    Book  Google Scholar 

  • Lasinio GJ, Mastrantonio G, Pollice A (2013) Discussing the “big n problem’’. Stat Method Appl 22(1):97–112

    Article  Google Scholar 

  • Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the SPDE approach. J Roy Stat Soc B Met 73(4):423–498

    Article  Google Scholar 

  • Mardia KV, Marshall RJ (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71(1):135–146

    Article  Google Scholar 

  • Mariethoz G, Caers J (2015) Multiple-point geostatistics: stochastic modeling with training images. Wiley, Chichester

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  Google Scholar 

  • Minniakhmetov I, Dimitrakopoulos R (2017) Joint high-order simulation of spatially correlated variables using high-order spatial statistics. Math Geosci 49(1):39–66

    Article  Google Scholar 

  • Murphy SA, Van der Vaart AW (2000) On profile likelihood. J Am Stat Assoc 95(450):449–465

    Article  Google Scholar 

  • Mussardo G (2010) Statistical field theory. Oxford University Press, Oxford

    Google Scholar 

  • Nadaraya EA (1964) On estimating regression. Theor Probab Appl 9(1):141–142

    Article  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York

    Google Scholar 

  • Olea RA (2012) Geostatistics for engineers and earth scientists. Springer, New York

    Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    Google Scholar 

  • Rivoirard J (1987) Two key parameters when choosing the kriging neighborhood. Math Geol 19(8):851–856

    Article  Google Scholar 

  • Rue H, Held L (2005) Gaussian Markov random fields: theory and applications. Chapman and Hall, Boca Raton

    Book  Google Scholar 

  • Severini TA, Wong WH (1992) Profile likelihood and conditionally parametric models. Ann Stat 20(4):1768–1802

    Article  Google Scholar 

  • Strebelle SB, Journel AG (2001) Reservoir modeling using multiple-point statistics. In: SPE annual technical conference and exhibition, 30 September–3 October, New Orleans, Louisiana, Society of Petroleum Engineers, SPE–71324–MS

  • Sun Y, Li B, Genton MG (2012) Geostatistics for large datasets. In: Porcu E, Montero J, Schlather M (eds) Advances and challenges in space-time modelling of natural events. Lecture notes in statistics. Springer, Berlin, pp 55–77

    Chapter  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics. Springer, Berlin

    Book  Google Scholar 

  • Watson GS (1964) Smooth regression analysis. Sankhya Ser A 26(1):359–372

    Google Scholar 

  • Zhong X, Kealy A, Duckham M (2016) Stream kriging: incremental and recursive ordinary kriging over spatiotemporal data streams. Comput Geosci 90:134–143

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ricardo Olea (United States Geological Survey, Reston, Virginia, USA) who provided the coal data analyzed and graciously read a draft of this manuscript, offering valuable comments and insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionissios T. Hristopulos.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 649 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hristopulos, D.T., Pavlides, A., Agou, V.D. et al. Stochastic Local Interaction Model: An Alternative to Kriging for Massive Datasets. Math Geosci 53, 1907–1949 (2021). https://doi.org/10.1007/s11004-021-09957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-021-09957-7

Keywords

Navigation