Log in

The Influence of the Dispersed Filler of the Ni–Fe–Si–C System on the Physicomechanical Properties and Structure of Epoxy Composites

  • Published:
Materials Science Aims and scope

The influence of a dispersed powder filler obtained by thermal synthesis from a mixture of 65% titanium hydride, 30% ferrosilicon, and 5% technical carbon powders, on the main physicomechanical properties of a polymer composite based on ED-20 epoxy diane oligomer, is investigated. The content of the filler varied in the range from 5 to 40 mass%. The introduction of the filler into the polymer composition leads to a noticeable increase in the main mechanical characteristics of the composite. Its maximum values at the dispersed component content of 10%, ensure an increase in bending strength in 1.6 times, and an impact toughness in 1.7 times compared to the original matrix. A further increase in the dispersed filler content in the composite composition to 20–40% leads to a decrease in fracture stresses, the level of which, however, still exceeds the strength of the original matrix phase. Composites with 5% filler demonstrate maximum values of adhesive strength and minimum values of residual stresses. When the content of dispersed filler increases by more than 5–10%, the formation of the dispersed particles conglomerates the number and size of which increase with the increase in the powder concentration in the mixture is observed in the composite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. N. R. Paluvai, S. Mohanty, and S. K. Nayak, “Synthesis and modifications of epoxy resins and their composites: A review,” Polymer-Plastics Techn. and Eng., 53, Is. 16, 1723–1758 (2014). https://doi.org/10.1080/03602559.2014.919658

  2. P. Mohan, “A critical review. The modification, properties, and applications of epoxy resins,” Polymer-Plastics Techn. and Eng., 52, Is. 2, 107–125 (2013). https://doi.org/10.1080/03602559.2012.727057

  3. J.-P. Pascault, and R. J. J. Williams, Epoxy Polymers, New Materials and Innovations, Weinheim, Wiley-VCH (2010). https://doi.org/10.1002/9783527628704.ch1

    Article  Google Scholar 

  4. M. L. Kerber, M. V. Vinogradov, G. S. Golovkin, Yu. A. Gotbatkina, and V. K. Kryzhanovskui, Polymer Composite Materials: Structure, Properties, Technology [in Russian], Proffesiya, St.-Peterburg (2009).

  5. K. M. Sanjay, Composites Manufacturing, Materials, Products, & Process Engineering, Taylor & Francis, Washington (2002). https://doi.org/10.1201/9781420041989

    Article  Google Scholar 

  6. A. K. Srivastava, and P. Mohan, “Synthesis reaction and properties of modified epoxy resins,” J. of Macromolecular Sci. – Rev. in Macromolecular Chem. and Phys., 37, Is. 4, 687–716 (1997). https://doi.org/10.1080/15321799708009653

  7. S. L. Bazhenov, A. A. Berkin, A. A. Kulkov, and V. G. Oshmian, Polymer Composite Materials: Strength and Technology [in Russian], Intellekt, Moscow (2010).

    Google Scholar 

  8. C. M. Manjunatha, A. C. Taylor, A. J. Kinloch, and S. Sprenger, “The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite,” Composites Sci. and Techn., 70, Is. 1, 193–199 (2010). https://doi.org/10.1016/j.compscitech.2009.10.012

  9. S.-Y. Fu, and B. Lauke, “Characterization of tensile behaviour of hybrid short glass fibre/calcite particle/ABS composites,” Composites Part A: Applied Sci. and Manufacturing, 29, Iss. 5–6, 575–583 (1998). https://doi.org/10.1016/S1359-835X(97)00117-6

  10. G. O. Sirenko, L. Ya. Midak, and M. B. Kvych, “Search of optimal carbon fiber content in the polymer matrix of the antifriction composite,” Physics and Chemistry of Solid State [in Ukrainian], 7, Is. 1, 172–176 (2006).

    Google Scholar 

  11. I. Alexandrou, E. Kymakis, and G. A. J. Amaratunga, “Polymer-nanotube composites: Burying nanotubes improves their field emission properties,” Appl. Phys. Letters, 80, Is. 8, 1435–1437 (2002). https://doi.org/10.1063/1.1449537

  12. K.-T. Lau, C. Gu, and D. Hui, “A critical review on nanotube and nanotube/nanoclay related polymer composite materials,” Composites Part B: Eng., 37, Is. 6, 425–436 (2006). https://doi.org/10.1016/j.compositesb.2006.02.020

  13. X.-L. ** structure in epoxy coating,” Carbon, 157, 217–233 (2020). https://doi.org/10.1016/j.carbon.2019.10.034

    Article  CAS  Google Scholar 

  14. A. V. Buketov, G. A. Bagliuk, O. M. Sizonenko, O. O. Sapronov, S. O. Smetankin, and A. S. Torpakov, “Effect of particulate Ti–Al–TiC reinforcements on the mechanical properties of epoxy polymer composites,” Powder Metallurgy and Metal Ceramics, 61, Iss. 9–10, 586–596 (2023). https://doi.org/10.1007/s11106-023-00347-8

    Article  CAS  Google Scholar 

  15. G. A. Bagliuk, O. V. Suprun, and A. A. Mamonova, “Peculiarities of structure formation during the thermal synthesis of multicomponent compounds from powder mixtures based on the TiH2–Fe–Si–Mn–C(B4C) system,” Naukovi Notatky [in Ukrainian], Is. 58, 27–35 (2017).

    Google Scholar 

  16. O. V. Suprun, G. A. Bagliuk, and O. V. Shyrokov, “Features of the structure and phase formation of multicomponent compounds from powder mixtures based on the TiH2–Fe–Si–Mn system with different B4C content,” Naukovi Notatky [in Ukrainian], Is. 66, 344–350 (2019).

    Google Scholar 

  17. X. Li, L. Gao, X. Shao, C. Zhang, and C. Wang, “Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and scheduling,” Computers & Operations Res., 37, Is. 4, 656–667 (2010). https://doi.org/10.1016/j.cor.2009.06.008

  18. G. E. Rani, R. Murugeswari, S. Siengchin, N. Ra**i, and M. A. Kumar, “Quantitative assessment of particle dispersion in polymeric composites and its effect on mechanical properties,” J. of Mater. Res. and Techn., 19, 1836–1845 (2022). https://doi.org/10.1016/j.jmrt.2022.05.147

    Article  CAS  Google Scholar 

  19. B. Turcsanyi, B. Pukanszky, and F. Tudos, “Composition dependence of tensile yield stress in filled polymers,” J. Mater. Sci. Lett., 7, 160–162 (1988). https://doi.org/10.1007/BF01730605

    Article  CAS  Google Scholar 

  20. H.-L. Dai, C. Mei, and Y.-N. Rao, “A novel method for prediction of tensile strength of spherical particle-filled polymer composites with strong adhesion,” Polymer Eng. and Sci., 57, Is. 2, 137–142 (2017). https://doi.org/10.1002/pen.24393

  21. A. Zavialov, T. Brusentseva, L. Vikulina, S. Bardakharov, T. Chymytov, and V. Syzrantsev, “Interaction of silica nanoparticles with polymers,” Nanoindustriya [in Ukrainian], 39, Is. 1, 32–36 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Bagliuk.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 59, No. 5, 89–96, September–October, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranovska, O.V., Bagliuk, G.A., Buketov, A.V. et al. The Influence of the Dispersed Filler of the Ni–Fe–Si–C System on the Physicomechanical Properties and Structure of Epoxy Composites. Mater Sci 59, 608–615 (2024). https://doi.org/10.1007/s11003-024-00817-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-024-00817-3

Keywords

Navigation