Log in

Forest landscape dynamics after intentional large-scale fires in western Patagonia reveal unusual temperate forest recovery trends

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Western Chilean Patagonia is an isolated temperate region with an important proportion of intact forest landscapes (IFL) that was subjected to large-scale fires over 60 years ago. However, there is no empirical evaluation of the land cover dynamics to establish the forest loss and recovery, and the effect on the landscape structure and function, and remnant IFL following the fires.

Objectives

The present study addressed the following questions: (1) What have been the main trends of the land cover dynamics between 1984 and 2018 following earlier fires, and how have these trends shaped the spatial patterns and potential carbon stock of forests in western Patagonia? (2) What proportion of forest landscape remains intact following fires in this region?

Methods

We selected the Coyhaique Province (1,231,910 ha) in western Chilean Patagonia as the study area. Land cover maps for three dates (1984, 2000, 2018) were used to evaluate landscape dynamics after fires. A map of persistence and change occurrence was made to estimate the IFL area over the 1984–2018 period. Landscape metrics were used to assess landscape structure change, and potential carbon stock was estimated based on a literature review.

Results

Following fires, the main land cover changes between 1984 and 2018 were loss of ~ 32,600 ha of old-growth forest and a recovery of ~ 69,000 ha of second-growth forest. The increase in second-growth forest area mainly resulted from loss of agricultural cover (~ 41% of the area). Despite these changes, ~ 61% of the area could potentially remain as IFL after fires. Over the 1984–2018 period, a slight increase in fragmentation of old-growth forest, and a decline in second-growth forest were observed. Coyhaique Province experienced a slight increase (3.6%) in overall potential carbon stock, likely as a result of second-growth forest recovery.

Conclusions

Our study provides the first evidence of the western Patagonia landscape state after more than six decades since the large-scale fires. The results provide baseline information on landscape structure and function that could help to make conservation and forest management decisions on specific territory areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Allan JR, Venter O, Maxwell S, Bertzky B, Jones K, Shi Y, Watson JEM (2017) Recent increases in human pressure and forest loss threaten many Natural World Heritage Sites. Biol Conserv 206:47–55

    Article  Google Scholar 

  • Altamirano A, Miranda A, Aplin P, Carrasco J, Catalan G, Cayuela-Delgado L, Fuentes-Castillo T, Hernández A, Martínez-Harms MJ, Peluso F, Prado M, Reyes-Riveros R, Van Holt T, Vergara C, Zamorano-Elgueta C, Di Bella C (2020) Natural forests loss and tree plantations: large-scale tree cover loss differentiation in a threatened biodiversity hotspot. Environ Res Lett 15:124055

    Article  Google Scholar 

  • Armenteras D, González TM, Retana J (2013a) Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol Conserv 159:73–79

    Article  Google Scholar 

  • Armenteras D, Rodríguez N, Retana J (2013b) Landscape dynamics in northwestern Amazonia: an assessment of pastures, fire and illicit crops as drivers of tropical deforestation. PLoS ONE 8:e54310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armenteras D, Espelta JM, Rodríguez N, Retana J (2017) Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Glob Environ Change 46:139–147

    Article  Google Scholar 

  • Armenteras D, Dávalos LM, Barreto JS, Miranda A, Hernández-Moreno Á, Zamorano-Elgueta C, González-Delgado TM, Meza-Elizalde MC, Retana J (2021) Fire-induced loss of the world’s most biodiverse forests in Latin America. Sci Adv 7:1–8

    Article  Google Scholar 

  • Astorga A, Moreno PC, Reid B (2018) Watersheds and trees fall together: an analysis of intact forested watersheds in southern Patagonia (41–56° S). Forests 9:385

    Article  Google Scholar 

  • Beuchle R, Cristina R, Edemir Y, Seliger R, Douglas H, Sano E, Achard F (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr 58:116–127

    Article  Google Scholar 

  • Bizama G, Torrejón F, Aguayo M, Muñoz MD, Echeverría C, Urritia R (2011) Pérdida y fragmentación del bosque nativo en la cuenca del río Aysén (Patagonia-Chile) durante el siglo XX. Rev Geogr Norte Gd 49:125–138

    Article  Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science (80-) 324:481–484

    Article  CAS  Google Scholar 

  • Braun AC, Troeger D, Garcia R, Aguayo M, Barra R, Vogt J (2017) Assessing the impact of plantation forestry on plant biodiversity: a comparison of sites in Central Chile and Chilean Patagonia. Glob Ecol Conserv 10:159–172

    Article  Google Scholar 

  • Chazdon RL, Lindenmayer D, Guariguata MR, Crouzeilles R, Rey Benayas JM, Lazos Chavero E (2020) Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ Res Lett 15:043002

    Article  Google Scholar 

  • Costanza R, Daly H (1992) Natural capital and sustainable development. Conserv Biol 6:37–46

    Article  Google Scholar 

  • Crouzeilles R, Ferreira MS, Chazdon RL, Lindenmayer DB, Sansevero JBB, Monteiro L, Iribarrem A, Latawiec AE, Strassburg BBN (2017) Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci Adv 3:1–8

    Article  Google Scholar 

  • de Lima GTNP, dos Hackbart VCS, Bertolo LS, dos Santos RF (2016) Identifying driving forces of landscape changes: historical relationships and the availability of ecosystem services in the Atlantic forest. Ecosyst Serv 22:11–17

    Article  Google Scholar 

  • Dobor L, Hlásny T, Rammer W, Barka I, Trombik J, Pavlenda P, Šebeň V, Štěpánek P, Seidl R (2018) Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agric Meteorol 263:308–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Driscoll DA, Armenteras D, Bennett AF, Brotons L, Clarke MF, Doherty TS, Haslem A, Kelly LT, Sato CF, Sitters H, Aquilué N, Bell K, Chadid M, Duane A, Meza-Elizalde MC, Giljohann KM, González TM, Jambhekar R, Lazzari J, Morán-Ordóñez A, Wevill T (2021) How fire interacts with habitat loss and fragmentation. Biol Rev 96:976–998

    Article  PubMed  Google Scholar 

  • Duarte GT, Ribeiro MC, Paglia AP (2016) Ecosystem services modeling as a tool for defining priority areas for conservation. PLoS ONE 11:1–19

    Article  Google Scholar 

  • Eastman JR (2012) IDRISI Selva Tutorial. IDRISI Production, Clark Labs-Clark University, Worcester, 45

    Google Scholar 

  • Echeverría C, Coomes D, Salas J, Rey-Benayas JM, Lara A, Newton A (2006) Rapid deforestation and fragmentation of Chilean Temperate Forests. Biol Conserv 130:481–494

    Article  Google Scholar 

  • Echeverría C, Coomes DA, Hall M, Newton AC (2008) Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecol Modell 212:439–449

    Article  Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447

    Article  Google Scholar 

  • Fa JE, Watson JEM, Leiper I, Potapov P, Evans TD, Burgess ND, Molnár Z, Fernández-Llamazares Á, Duncan T, Wang S, Austin BJ, Jonas H, Robinson CJ, Malmer P, Zander KK, Jackson MV, Ellis E, Brondizio ES, Garnett ST (2020) Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes. Front Ecol Environ 18:135–140

    Article  Google Scholar 

  • Fajardo A, de Graaf R (2004) Tree dynamics in canopy gaps in old-growth forests of Nothofagus pumilio in Southern Chile. Plant Ecol 173(95–105):97

    Google Scholar 

  • Fajardo A, Gundale MJ (2015) Combined effects of anthropogenic fires and land-use change on soil properties and processes in Patagonia, Chile. For Ecol Manag 357:60–67

    Article  Google Scholar 

  • FAO (2020) Global Forest Resources Assessment 2020 - Key finding. Food and Agriculture Organization of the United Nations (FAO), Rome

  • Forman RTT (1995) Some general principles of landscape and regional ecology. Landsc Ecol 10:133–142

    Article  Google Scholar 

  • Fryer J, Williams ID (2021) Regional carbon stock assessment and the potential effects of land cover change. Sci Total Environ 775:145815

    Article  CAS  PubMed  Google Scholar 

  • Gálvez N, Infante J, Fernandez A, Díaz J, Petracca L (2021) Land use intensification coupled with free-roaming dogs as potential defaunation drivers of mesocarnivores in agricultural landscapes. J Appl Ecol 58:2962–2974

    Article  Google Scholar 

  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381

    Article  CAS  PubMed  Google Scholar 

  • Hernández Á, Miranda MD, Arellano EC, Dobbs C (2016) Landscape trajectories and their effect on fragmentation for a Mediterranean semi-arid ecosystem in Central Chile. J Arid Environ 127:74–81

    Article  Google Scholar 

  • Hernández-Moreno Á, Reyes-Paecke S (2018) The effects of urban expansion on green infrastructure along an extended latitudinal gradient (23 ° S – 45 ° S ) in Chile over the last thirty years. Land Use Policy 79:725–733

    Article  Google Scholar 

  • Hernández-Moreno Á, Echeverría C, Sotomayor B, Soto DP (2021) Relationship between anthropization and spatial patterns in two contrasting landscapes of Chile. Appl Geogr 137:102599

    Article  Google Scholar 

  • Hijmans RJ, Etten J Van, Sumner M, Cheng J, Bevan A, Bivand R, Busetto L, Canty M, Forrest D, Golicher D, Gray J, Greenberg JA, Karney C, Mattiuzzi M, Mosher S, Shortridge A, Wueest R (2019) Package ‘raster.’ 248

  • Huang C, He HS, Liang Y, Wu Z, Hawbaker TJ, Gong P, Zhu Z (2018) Long-term effects of fire and harvest on carbon stocks of boreal forests in northeastern China. Ann for Sci 75:42

    Article  Google Scholar 

  • Inkoom JN, Frank S, Greve K, Walz U, Fürst C (2018) Suitability of different landscape metrics for the assessments of patchy landscapes in West Africa. Ecol Indic 85:117–127

    Article  Google Scholar 

  • IPCC (2021) Summary for Policymakers. Clim. Chang. 2021 Phys. Sci. Basis. Work. Gr. I Contrib. to Sixth Assess. Rep. Intergov. Panel Clim. Chang, pp 3–32

  • Islam M, Deb GP, Rahman M (2017) Forest fragmentation reduced carbon storage in a moist tropical forest in Bangladesh: implications for policy development. Land Use Policy 65:15–25

    Article  Google Scholar 

  • Jacobson AP, Riggio J, M. Tait A, E. M. Baillie J (2019) Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci Rep 9:1–13

  • Jonson J (2010) Ecological restoration of cleared agricultural land in Gondwana Link: lifting the bar at ‘Peniup.’ Ecol Manag Restor 11:16–26

    Article  Google Scholar 

  • Kitzberger T, Veblen TT (1999) Fire-induced changes in northern Patagonian landscapes. Landsc Ecol 14:1–15

    Article  Google Scholar 

  • Kozak J, Ziółkowska E, Vogt P, Dobosz M, Kaim D, Kolecka N, Ostafin K (2018) Forest-cover increase does not trigger forest-fragmentation decrease: case study from the polish carpathians. Sustainability 10:1472

    Article  Google Scholar 

  • Langdon B, Pauchard A, Aguayo M (2010) Pinus contorta invasion in the Chilean Patagonia: local patterns in a global context. Biol Invasions 12:3961–3971

    Article  Google Scholar 

  • Latty EF, Canham CD, Marks PL (2004) The effects of land-use history on soil properties and nutrient dynamics in northern hardwood forests of the Adirondack mountains. Ecosystems 7:193–207

    Article  CAS  Google Scholar 

  • Locher-Krause KE, Volk M, Waske B, Thonfeld F, Lautenbach S (2017) Expanding temporal resolution in landscape transformations : insights from a landsat-based case study in Southern Chile. Ecol Indic 75:132–144

    Article  Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago de Chile

    Google Scholar 

  • Martínez-Harms MJ, Armesto JJ, Castilla JC, Astorga A, Aylwin J, Buschmann AH, Castro V, Daneri G, Fernández M, Fuentes-Castillo T, Gelcich S, González HE, Hucke-Gaete R, Marquet PA, Morello F, Nahuelhual L, Pliscoff P, Reid B, Rozzi R, Guala C, Tecklin D (2022) A systematic evidence map of conservation knowledge in Chilean Patagonia. Conserv Sci Pract 4:1–14

    Google Scholar 

  • Martinic M (2014) De La Trapananda Al Áysen, II Edición. Ediciones Fundación Río Baker, Santiago

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps

  • McIntire EJB, Fajardo A (2011) Facilitation within species: a possible origin of group-selected super organisms. Am Nat 178:88–97

    Article  PubMed  Google Scholar 

  • Messier C, Bauhus J, Doyon F, Maure F, Sousa-Silva R, Nolet P, Mina M, Aquilué N, Fortin MJ, Puettmann K (2019) The functional complex network approach to foster forest resilience to global changes. For Ecosyst 6:1–16

    Article  Google Scholar 

  • Mina M, Messier C, Duveneck M, Fortin MJ, Aquilué N (2021) Network analysis can guide resilience-based management in forest landscapes under global change. Ecol Appl 31:e2221

    Article  PubMed  Google Scholar 

  • Miranda A, Altamirano A, Cayuela L, Lara A, González M (2017) Native forest loss in the Chilean biodiversity hotspot: revealing the evidence. Reg Environ Change 17:285–297

    Article  Google Scholar 

  • Miura S, Amacher M, Hofer T, San-Miguel-Ayanz J, Ernawati, Thackway R (2015) Protective functions and ecosystem services of global forests in the past quarter-century. For Ecol Manag 352:35–46

    Article  Google Scholar 

  • Moreno-Meynard P, Obando-Barría M (2006) Pino ponderosa en Aysén. Biometría y genética. Imprenta Wesaldi, Coyhaique, Chile: INFOR

  • Mukul SA, Halim MA, Herbohn J (2020) forest carbon stock and fluxes: distribution, biogeochemical cycles, and measurement techniques. In: Leal Filho W, Azul AM, Brandli L et al (eds) Life on land. Encyclopedia of the UN sustainable development goals. Springer, Cham, pp 1–16

    Google Scholar 

  • Müller F, de Groot R, Willemen L (2010) Ecosystem services at the landscape scale: the need for integrative approaches. Landsc Online 23:1–11

    Article  Google Scholar 

  • Myeong S, Nowak DJ, Duggin MJ (2006) A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens Environ 101:277–282

    Article  Google Scholar 

  • Nanni AS, Sloan S, Aide TM, Graesser J, Edwards D, Grau HR (2019) The neotropical reforestation hotspots: a biophysical and socioeconomic typology of contemporary forest expansion. Glob Environ Change 54:148–159

    Article  Google Scholar 

  • Noon ML, Goldstein A, Ledezma JC, Roehrdanz PR, Cook-Patton SC, Spawn-Lee SA, Wright TM, Gonzalez-Roglich M, Hole DG, Rockström J, Turner WR (2021) Map** the irrecoverable carbon in Earth’s ecosystems. Nat Sustain 5:37–46

    Article  Google Scholar 

  • Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA (2014) Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148:42–57

    Article  Google Scholar 

  • Osorio M, Saavedra G, Velásquez H (2007) Otras Narrativas En Patagonia. Tres miradas antropológicas a la región de Aisén. Ediciones Ñire Negro, Chile

  • Osorio M, Muñoz A, Mancilla E (2014) Antes esto era pampa, hoy es nuestra historia. Historia del barrio caminando hacia el futuro para un nuevo amanecer. Ñire Negro, Coyhaique

  • Otavo S, Echeverría C (2017) Fragmentación progresiva y pérdida de hábitat de bosques naturales en uno de los hotspot mundiales de biodiversidad. Rev Mex Biodivers 88:924–935

    Article  Google Scholar 

  • Otero L (2006) La huella del fuego. Historia de los bosques nativos. Poblamiento y cambios en el paisaje del sur de Chile. Pehuén Editores, Santiago

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) a large and persistent carbon sink in the world’s forests. Science (80-) 333:988–993

    Article  CAS  Google Scholar 

  • Pellikka PKE, Heikinheimo V, Hietanen J, Schäfer E, Siljander M, Heiskanen J (2018) Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya. Appl Geogr 94:178–189

    Article  Google Scholar 

  • Peri PL, Gargaglione V, Martínez-Pastur G, Lencinas MV (2010) Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. For Ecol Manag 260:229–237

    Article  Google Scholar 

  • Peterson GD (2002) Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems 5:329–338

    Article  Google Scholar 

  • Potapov P, Yaroshenko A, Turubanova S, Dubinin M, Laestadius L, Thies C, Aksenov D, Egorov A, Yesipova Y, Glushkov I, Karpachevskiy M, Kostikova A, Manisha A, Tsybikova E, Zhuravleva I (2008) Map** the world’s intact forest landscapes by remote sensing. Ecol Soc 13:51

    Article  Google Scholar 

  • Potapov PV, Turubanova SA, Tyukavina A, Krylov AM, McCarty JL, Radeloff VC, Hansen MC (2015) Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens Environ 159:28–43

    Article  Google Scholar 

  • Potapov P, Hansen MC, Laestadius L, Turubanova S, Yaroshenko A, Thies C, Smith W, Zhuravleva I, Komarova A, Minnemeyer S, Esipova E (2017) The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci Adv 3:1–14

    Article  Google Scholar 

  • Potapov P, Hansen MC, Kommareddy I, Kommareddy A, Turubanova S, Pickens A, Adusei B, Tyukavina A, Ying Q (2020) Landsat analysis ready data for global land cover and land cover change map**. Remote Sens 12:426

    Article  Google Scholar 

  • Puettmann KJ, Coates KD, Messier C (2009) A critique of silviculture: managing for complexity. Island press, Washington DC

  • Puyravaud J-P (2003) Standardizing the calculation of the annual rate of deforestation. For Ecol Manag 177:593–596

    Article  Google Scholar 

  • Quintanilla V (2005) Estado de recuperación del bosque nativo en una cuenca nordpatagónica de Chile, perturbada por grandes fuegos acaecidos 50 años atrás (44°-45° S ). Rev Geogr Norte Gd 34:73–92

    Google Scholar 

  • Quintanilla V (2008) Perturbaciones a la vegetación nativa por grandes fuegos de 50 años atrás, en bosques Nordpatagónicos. Caso de estudio en Chile Meridional. An Geogr 28:85–104

    Google Scholar 

  • Radwan TM, Blackburn GA, Whyatt JD, Atkinson PM (2021) Global land cover trajectories and transitions. Sci Rep 11:1–16

    Article  Google Scholar 

  • Rappaport DI, Morton DC, Longo M, Keller M, Dubayah R, Dos-Santos MN (2018) Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environ Res Lett 13:065013

    Article  Google Scholar 

  • Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the southern hemisphere: determinants of spread and invadability. J Biogeogr 21:511–527

    Article  Google Scholar 

  • Rodríguez Eraso N, Armenteras-Pascual D, Retana Alumbreros J (2013) Land use and land cover change in the Colombian Andes : dynamics and future scenarios. J Land Use Sci 8:154–174

    Article  Google Scholar 

  • Rouse JW, Hass RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the great plains with ERTS. Third Earth Resour Technol Satell Symp 1:309–317

    Google Scholar 

  • Shlisky A, Alencar AAC, Nolasco MM, Curran LM (2009) Overview: global fire regime conditions, threats, and opportunities for fire management in the tropics BT - Tropical Fire ecology: climate change, land use, and ecosystem dynamics. In: Cochrane MA (ed). Springer, Berlin Heidelberg, pp 65–83

  • Smale M, Tappan G, Reij C (2018) Farmer-managed restoration of agroforestry parklands in Niger. In: Wouterse F, Badiane O (eds) Fostering transformation and growth in Niger’s agricultural sector. Wageningen Academic Publishers, Wageningen, pp 19–34

    Chapter  Google Scholar 

  • Smith Pinto S, Silva JF, Fariñas G, Mario R (2008) Diversidad, estabilidad y dinámica del paisaje en comunidades de sabana. Ecotropicos 21:89–96

    Google Scholar 

  • Song X-P, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR (2018) Global land change from 1982 to 2016. Nature 560:639–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto DP, Puettmann KJ (2020) Merging multiple equilibrium models and adaptive cycle theory in forest ecosystems: implications for managing succession. Curr For Rep 6:282–293

    Article  Google Scholar 

  • Soto DP, Salas-Eljatib C, Donoso PJ, Hernández-Moreno Á, Seidel D, D’Amato AW (2022) Impacts of varying precipitation regimes upon the structure, spatial patterns, and productivity of Nothofagus pumilio-dominated old-growth forests in Patagonia. For Ecol Manag 524:120519

    Article  Google Scholar 

  • Taubert F, Fischer R, Groeneveld J, Lehmann S, Müller MS, Rödig E, Wiegand T, Huth A (2018) Global patterns of tropical forest fragmentation. Nature 554:519–522

    Article  CAS  PubMed  Google Scholar 

  • Taylor KT, Maxwell BD, Pauchard A, Nuñez MA, Peltzer DA, Terwei A, Rew LJ (2016) Drivers of plant invasion vary globally: evidence from pine invasions within six ecoregions. Glob Ecol Biogeogr 25:96–106

    Article  Google Scholar 

  • Tropek R, Sedlácek O, Beck J, Keil P, Musilová Z, Símová I, Storch D (2013) Comment on “High-resolution global maps of forest cover change.” Science (80-) 342:850–853

    Article  Google Scholar 

  • Turner MG, Gardner RH (2015) Landsape ecology in theory and practice. Pattern and process. Springer-Verlag, New York

    Book  Google Scholar 

  • Turner MG, Donato DC, Romme WH (2013) Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landsc Ecol 28:1081–1097

    Article  Google Scholar 

  • Tyukavina A, Potapov P, Hansen MC, Pickens AH, Stehman SV, Turubanova S, Parker D, Zalles V, Lima A, Kommareddy I, Song XP, Wang L, Harris N (2022) Global trends of forest loss due to fire from 2001 to 2019. Front Remote Sens 3:1–20

    Article  Google Scholar 

  • Uuemaa E, Antrop M, Marja R, Roosaare J, Mander Ü (2009) Landscape metrics and indices: an overview of their use in landscape research. Living Rev Landsc Res 3:1–28

    Article  Google Scholar 

  • Uuemaa E, Mander Ü, Marja R (2013) Trends in the use of landscape spatial metrics as landscape indicators: a review. Ecol Indic 28:100–106

    Article  Google Scholar 

  • Veblen TT, Kitzberger T, Villalba R (2004) Nuevos paradigmas en ecología y su influencia sobre el conocimiento de la dinámica de los bosques del sur de Argentina y Chile. In: Arturi M, Frangí J, Goya J (eds) Ecología y Manejo de Bosques de Argentina. Editorial de la Universidad Nacional de La Plata, La Plata, pp 1–48

    Google Scholar 

  • Venier LA, Thompson ID, Fleming R, Malcolm J, Aubin I, Trofymow JA, Langor D, Sturrock R, Patry C, Outerbridge RO, Holmes SB, Haeussler S, De Grandpré L, Chen HYH, Bayne E, Arsenault A, Brandt JP (2014) Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ Rev 22:457–490

    Article  Google Scholar 

  • Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Possingham HP, Laurance WF, Wood P, Fekete BM, Levy MA, Watson JEM (2016) Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat Commun 7:1–11

    Article  Google Scholar 

  • Watson JEM, Evans T, Venter O, Williams, B, Tulloch A, Stewart C, Thompson I, Ray JC, Murray K, Salazar A, McAlpine C, Potapov P, Walston J, Robinson JG, Painter M, Wilkie D, Filardi C, Laurance WF, Houghton RA, Maxwell S, Grantham H, Samper C, Wang S, Laestadius L, Runting RK, Silva-Chávez GA, Ervin J, Lindenmayer D (2018) The exceptional value of intact forest ecosystems. Nat Ecol Evol 2:599–610

    Article  PubMed  Google Scholar 

  • Zamorano-Elgueta C, Cayuela L, González-Espinosa M, Lara A, Parra-Vázquez MR (2012) Impacts of cattle on the South American temperate forests: challenges for the conservation of the endangered monkey puzzle tree (Araucaria araucana) in Chile. Biol Conserv 152:110–118

    Article  Google Scholar 

  • Zhao Y, Feng D, Yu L, Wang X, Chen Y, Bai Y, Hernández HJ, Galleguillos M, Estades C, Biging GS, Radke JD, Gong P (2016) Detailed dynamic land cover map** of Chile: accuracy improvement by integrating multi-temporal data. Remote Sens Environ 183:170–185

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by FONDECYT, Grant No. 11220353 to A.H-M., and ANID, No R20F0002 (PATSER). A.H.M. thank Benjamín Sotomayor for hel** with land cover maps and Paulo Moreno for their help in the carbon stock literature review. We thank David Crawford to provide English revision support for the first draft of this work. Last, we thank to the critical review from Dr. Eric Gustafson and the anonymous reviewer which allowed improved the manuscript.

Funding

This study was funded by FONDECYT Grant No. 11220353, and ANID Regional No R20F0002 (PATSER).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ÁH-M and DPS. The first draft of the manuscript was written by ÁH-M, and all authors commented and edited on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ángela Hernández-Moreno.

Ethics declarations

Competing interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1460 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Moreno, Á., Soto, D.P., Miranda, A. et al. Forest landscape dynamics after intentional large-scale fires in western Patagonia reveal unusual temperate forest recovery trends. Landsc Ecol 38, 2207–2225 (2023). https://doi.org/10.1007/s10980-023-01687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01687-x

Keywords

Navigation