Log in

Stability effects of added biomass on microalgae styrene–butadiene–styrene composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of added microalgae biomass to styrene–butadiene–styrene triblock composites (SBS) loaded with Chlorella vulgaris and Arthrospira platensis biomass was evaluated by nonisothermal chemiluminescence (CL), infrared spectroscopy, and differential scanning calorimetry (DSC) analysis. The high biomass content of up to 20% for Chlorella vulgaris and 30% for Arthrospira platensis create appropriate conditions for the propagation of oxidation, which is a convenient manner applicable to the degrading digestion of polymer matrix. The chemiluminescence spectra on these ecological formulations indicate the contribution of additives to the optimization of polymer waste disintegration. The degrading activities of the studied microalgal biomass added to the polymer matrix are influenced not only by concentration and source but also by the temperature evolution, which determines the proper thermal regime of material decay. The thermal aging of SBS/microalgal composites progresses peculiarly under the action of various pro-oxidant components. The amplitudes of oxidative conversion of SBS support are discussed with values of main kinetic parameters, onset, and intermediate oxidation temperatures. Although the addition of biomass to the polymer matrix introduces various transformations that affect its thermal behavior, the combined CL and DSC studies indicate that these changes ultimately enhance the polymer’s stabilization. The control SBS composite was the most stable, likely due to its homogeneous structure compared to the heterogeneous mixture in the microalgae SBS composites. Prolonged heating at elevated temperatures (80 °C and 120 °C) can lead to thermal aging and degradation of the polymer matrix, causing changes such as chain scission or cross-linking, which alter the material’s thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Pielichowski K, Njuguna J, Majka TM. Recycling of polymers by thermal degradation. In: Pielichowski K, Njuguna J, Majka TM, editors. Thermal degradation of polymeric Materials. Amsterdam. Elsevier; 2023. pp. 303–6. https://doi.org/10.1016/B978-0-12-823023-7.00006-X.

  2. Jung H, Shin G, Kwak H, Hao LT, Jegal J, Kim HJ, Jeon H, Park J, Oh DX. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. Chemosphere. 2023;320: 138089. https://doi.org/10.1016/j.chemosphere.2023.138089.

    Article  CAS  PubMed  Google Scholar 

  3. Prifti K, Galeazzi A, Pacheco-López A, Espuña A, Manenti F. Fully electrified conversion of low-quality plastic waste to polymer precursors. Computer Aided Chem Eng. 2023;52:2535–40. https://doi.org/10.1016/B978-0-443-15274-0.50403-0.

    Article  Google Scholar 

  4. Sharma K, Toor SS, Brandão J, Pedersen TH, Rosendahl LA. Optimized conversion of waste cooking oil into ecofriendly bio-based polymeric surfactant - A solution for enhanced oil recovery and green fuel compatibility. J Clean Prod. 2021;294: 126214. https://doi.org/10.1016/j.jclepro.2021.126214.

    Article  CAS  Google Scholar 

  5. Belioka MP, Siddiqui MN, Antonakou EV, Redhwi HH, Achilias DS. Kinetic analysis of thermal and catalytic degradation of polymers found in waste electric and electronic equipment. Thermochim Acta. 2019;675:69–76. https://doi.org/10.1016/j.tca.2019.03.001.

    Article  CAS  Google Scholar 

  6. Yang R, Zhao J, Liu Y. Oxidative degradation products analysis of polymer materials by pyrolysis gas chromatography-mass spectrometry. Polym Degrad Stab. 2013;98:2466–72. https://doi.org/10.1016/j.polymdegradstab.2013.05.018.

    Article  CAS  Google Scholar 

  7. Siddiqui MN, Antonakou EV, Redhwi HH, Achilias DS. Simulation of the thermal degradation kinetics of biobased/biodegradable and non-biodegradable polymers using the random chain-scission model. Capabilities and limitations. J Anal Appl Pyrol. 2022;168:105767. https://doi.org/10.1016/j.jaap.2022.105767.

    Article  CAS  Google Scholar 

  8. Kholodkova EM, Vcherashnyaya AS, Bludenko AB, Chulkov VN, Ponomarev AV. Radiation-thermal approaches to the processing of complex polymer waste. Radiat Phys Chem. 2020;170: 108664. https://doi.org/10.1016/j.radphyschem.2019.108664.

    Article  CAS  Google Scholar 

  9. Mallakpour S, Behranvand V. Waste-mediated synthesis of polymer nanocomposites and assessment of their industrial potential exploitations. In: Hussain CM, editor. Handbook of polymer nanocomposites for industrial applications. Micro and nano technologies. Amsterdam: Elsevier; 2021. p. 147–67. https://doi.org/10.1016/B978-0-12-821497-8.00004-6.

    Chapter  Google Scholar 

  10. Thiviya P, Gamage A, Liyanapathiranage A, Makehelwala M, Dassanayake RS, Manamperi A, Merah O, Mani S, Reddy Koduru J, Madhujith T. Algal polysaccharides: Structure, preparation and applications in food packaging. Food Chem. 2023;405:134903. https://doi.org/10.1016/j.foodchem.2022.134903.

    Article  CAS  Google Scholar 

  11. Ng H-S, Chew L-L. Valuable compounds produced by microalgae. In: Bisaria V, editor. Handbook of biorefinery research and technology. Dordrecht: Springer; 2022. p. 1–23. https://doi.org/10.1007/978-94-007-6724-9_13-2.

    Google Scholar 

  12. Vickram AS, Saravanan A, Senthil Kumar P, Thamarai P, Yasodha S, Jamuna G, Rangasamy G. An integrated approach to the sustainable development and production of biofuel from biopolymers and algal biomass derived from wastewater. Fuel. 2023;349: 128691. https://doi.org/10.1016/j.fuel.2023.128691.

    Article  CAS  Google Scholar 

  13. Burillo G, Clough RL, Czvikovszky T, Guven O, Le Moel A, Liu W, Singh A, Yang J, Zaharescu T. Polymer recycling: potential application of radiation technology. Radiat Phys Chem. 2002;64:41–51. https://doi.org/10.1016/S0969-806X(01)00443-1.

    Article  CAS  Google Scholar 

  14. Bellinetto E, Ciapponi R, Contino M, Marano C, Turri S. Microalgal biomass as renewable biofiller in natural rubber compounds. Polym Bull. 2022;79(10):8927–46. https://doi.org/10.1007/s00289-021-03935-z.

    Article  CAS  Google Scholar 

  15. Bumbac M, Nicolescu CM, Olteanu RL, Gherghinoiu SC, Bumbac C, Tiron O, Radulescu C, Gorghiu LM, Stanescu SG, Serban BC, Buiu O. Preparation and characterization of microalgae styrene-butadiene composites using Chlorella vulgaris and Arthrospira platensis biomass. Polymers. 2023;15:1357. https://doi.org/10.3390/polym15061357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mittal R, Ranade V. Bioactives from microalgae: A review on process intensification using hydrodynamic cavitation. J Appl Phycol. 2023;35(3):1129–61. https://doi.org/10.1007/s10811-023-02945-w.

    Article  Google Scholar 

  17. Rajeshkumar L. Biodegradable polymer blends and composites. In: Rangappa SM, Paramewaranpillai J, Siengchin S, Ramesh M, editors. Biodegradable polymer blends and composites from renewable resources. Amsterdam: Elsevier; 2022. p. 527–49. https://doi.org/10.1016/B978-0-12-823791-5.00015-6.

    Chapter  Google Scholar 

  18. Chia WY, Tang DYY, Khoo KS, Lup ANK, Chew KW. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environ Sci Ecotechnol. 2020;4: 100065. https://doi.org/10.1016/j.ese.2020.100065.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Priya AK, Jilil AA, Dutta K, Rajendran S, Vasseghian Y, Karimi-Malch H, Soto-Moscoso M. Algal degradation of microplastic from the environment: Mechanism, challenges, and future prospects. Algal Res. 2022;67: 102848. https://doi.org/10.1016/j.algal.2022.102848.

    Article  Google Scholar 

  20. Chia WY, Tang DYY, Khoo KS, Lup ANK, Chew KW. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environ Sci Ecotechnol. 2020;4:100065. https://doi.org/10.1016/j.ese.2020.100065.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Getlichermann M, Trojan M, Daro A, David C. Degradation of polymer blends. Part VI: Photo-oxidation of polyethylene containing SIS triblock copolymers. Polym Degrad Stab. 1993;39:55–68. https://doi.org/10.1016/0141-3910(93)90125-3.

    Article  CAS  Google Scholar 

  22. Perera R, Albano C, González J, Silva P, Ichazo M. The effect of gamma radiation on the properties of polypropylene blends with styrene–butadiene–styrene copolymers. Polym Degrad Stab. 2004;85:741–50. https://doi.org/10.1016/j.polymdegradstab.2003.09.020.

    Article  CAS  Google Scholar 

  23. Lazim NH, Shamsudin SA, Hidzir NM. Mechanical and thermal studies on modified 50/50 natural rubber latex/poly(styrene-block-isoprene-block-styrene) blend by gamma irradiation and comparison with sulphur and peroxide vulcanization methods. Radiat Phys Chem. 2023;207: 110857. https://doi.org/10.1016/j.radphyschem.2023.110857.

    Article  CAS  Google Scholar 

  24. Rychlý J, Rychlá L, Novák I, Vanko V, Preťo J, Janigová I, Chodák I. Thermooxidative stability of hot melt adhesives based on metallocene polyolefins grafted with polar acrylic acid moieties. Polym Test. 2020;85: 106422. https://doi.org/10.1016/j.polymertesting.2020.106422.

    Article  CAS  Google Scholar 

  25. Zhou J, Wang M, Bäuerl C, Cortés-Macías E, Calvo-Lerma E, Carmen CM. The impact of liquid-pressurized extracts of Spirulina, Chlorella nd Phaedactylum tricornutum on in vitro antioxidant, antiinflammatory and bacterial growth effects and gut microbiota modulation. Food Chem. 2023;401: 134083. https://doi.org/10.1016/j.foodchem.2022.134083.

    Article  CAS  PubMed  Google Scholar 

  26. Mateescu C, Zaharescu T, Mariş M. Chemiluminescence study on the radiochemical stability of polypropylene modified with microalgal extracts. Radiat Phys Chem. 2021;183: 109401. https://doi.org/10.1016/j.radphyschem.2021.109401.

    Article  CAS  Google Scholar 

  27. Alejandre M, Ansorena D, Calvo MI, Cavero RY, Astiasarán I. Influence of a gel emulsion containing microalgal oil and a blackthorn (Prunus spinosa L.) branch extract on the antioxidant capacity and acceptability of reduced-fat beef patties. Meat Sci. 2019;148:219–22. https://doi.org/10.1016/j.meatsci.2018.05.022.

    Article  CAS  PubMed  Google Scholar 

  28. Hamed I, Moradi M, Ezati P, O’Higgins L, Meléndez-Martínez AJ, Matasf RF, Simat V, McClements DJ, Nordeng Jakobsen A, Lerfall J. Encapsulation of microalgal-based carotenoids: recent advances in stability and food applications. Trends Food Sci Technol. 2023;138:382–98. https://doi.org/10.1016/j.tifs.2023.06.027.

    Article  CAS  Google Scholar 

  29. Huang Q, Yan H, Liu Y, Cui X, Wang Y, Yu Z, Ruan R, Zhang Q. Effects of microalgae-bacteria inoculation ratio on biogas slurry treatment and microorganism interactions in the symbiosis system. J Clean Prod. 2022;362: 132271. https://doi.org/10.1016/j.jclepro.2022.132271.

    Article  CAS  Google Scholar 

  30. Aresta M, Dibenedetto A. Beyond fractionation in the utilization of microalgal components. In: Magalhäes Pires JC, Dc Cunha Conçalves AL, editors. Bioenergy with carbon capture and storage. Amsterdam: Elsevier; 2019. p. 173–193. https://doi.org/10.1016/B978-0-12-816229-3.00009-0.

  31. Laurens LML, Van Wychen S, McAllister JP, Arrowsmith S, Dempster TA, McGowen J, Pienkos PT. Strain, biochemistry, and cultivation-dependent measurement variability of algal biomass composition. Anal Biochem. 2014;452:86–95. https://doi.org/10.1016/j.ab.2014.02.009.

    Article  CAS  PubMed  Google Scholar 

  32. Yang Y, Hassan SHA, Kumar Awasthi M, Gajendran B, Sharma M, Ji M-K, Salama E-S. The recent progress on the bioactive compounds from algal biomass for human health applications. Food Biosci. 2023;51:102267. https://doi.org/10.1016/j.fbio.2022.102267.

    Article  CAS  Google Scholar 

  33. Jit BP, Pattnaik S, Arya R, Dash R, Sahoo SS, Pradhan B, Bhuyan PP, Kumar Behera P, Jena M, Sharma A, Kumar Agrawala P, Kumar BR. Phytochemicals: A potential next generation agent for radioprotection. Phytomedicine. 2022;106: 154188. https://doi.org/10.1016/j.phymed.2022.154188.

    Article  CAS  PubMed  Google Scholar 

  34. Bumbac M, Nicolescu CM, Olteanu RL, Manea EE, Bumbac C, Gorghiu LM, Radulescu C, Stanescu GS, Serban BC, Buiu O. UV-VIS analysis of granular activated algae chlorophyll content. J Sci Arts. 2021;4(57):1111–20. https://doi.org/10.46939/J.Sci.Arts-21.4-b06.

    Article  Google Scholar 

  35. Nicodemou A, Kallis M, Koutinas M. Biorefinery development for the production of polyphenols, algal biomass and lipids using olive processing industry waste. Sustain Cem Pharma. 2023;23: 100998. https://doi.org/10.1016/j.scp.2023.100998.

    Article  CAS  Google Scholar 

  36. Smith B. The infrared spectra of polymers III: Hydrocarbon polymers. Spectroscopy. 2021;36(11):22–5. https://doi.org/10.56530/spectroscopy.mh7872q7.

    Article  CAS  Google Scholar 

  37. Oliveira LN, Schmidt F, Vieira SL, de Lara AP, Caldas LVE. Evaluation of polybutadiene rubbers using FTIR spectra. Braz J Radiat Sci. 2017;5(2):1–17. https://doi.org/10.15392/bjrs.v5i2.198.

    Google Scholar 

  38. Arrigo R, Teresi R. Dintcheva NT, Mechanical and rheological properties of polystyrene-block-polybutadiene-block-polystyrene copolymer reinforced with carbon nanotubes: effect of processing conditions. J Polym Eng. 2018;38(2):107–17. https://doi.org/10.1515/polyeng-2016-0455.

    Article  CAS  Google Scholar 

  39. Kotoyori T. Activation energy for the oxidative thermal degradation of plastics. Thermochim Acta. 1972;5(1):51–8. https://doi.org/10.1016/0040-6031(72)80018-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the NO grants of 2014–2021, under project contract no. 27/2020, and from the project titled “Excellence and Performance to increase the RDI Institutional Capacity (Pro Excellence),” financed by the Romanian Ministry of Research, Innovation, and Digitization under contract no. 43 PFE/30 December 2021.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The roles were distributed equally in the performed study. The first draft of the manuscript was written by Traian Zaharescu and all authors commented on previous versions of the manuscript to prepare the submitted form of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marius Bumbac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharescu, T., Bumbac, M. & Nicolescu, C.M. Stability effects of added biomass on microalgae styrene–butadiene–styrene composites. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13419-7

Keywords

Navigation