Log in

Thermohydraulic performance of MXene-based nanofluid in a microchannel heat sink: effect of volume fraction

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Technological advancements necessitate efficient electronic heat management, driving the need for effective cooling solutions. This study investigates the application of MXene-based nanofluids across varying concentrations in microchannel heat sinks to enhance electronic cooling performance. Utilizing numerical simulations, we analyze nanofluid concentrations, flow dynamics, and performance evaluation criteria (PEC) using an Eulerian model to characterize the inhomogeneous flow properties. Concentrations ranging from 0.01 to 0.04 vol% are incrementally examined, with validation against experimental data to ensure accuracy. Key findings reveal that at a Reynolds number (Re) of 300, a 0.04 vol% nanofluid fraction yields a 20.1% reduction in thermal resistance compared to pure water. Moreover, at Re 1000, the heat transfer coefficient improves by 29.4% compared to the 0.04 vol% concentration. These results underscore the potential of MXene nanoflakes as adequate heat sink working fluids for electronics cooling. Applications of this research extend to various electronic devices and systems requiring efficient cooling mechanisms. By leveraging MXene nanofluids, manufacturers can enhance thermal management in microelectronic components, such as integrated circuits, LEDs, and power electronics. Additionally, this study’s insights can inform the design and optimization of cooling systems in high-performance computing, automotive electronics, and aerospace applications, where heat dissipation is critical for maintaining device reliability and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Regmi S, Poudel C, Adhikari R, Luo KQ. Applications of microfluidics and organ-on-a-chip in cancer research. Biosensors. 2022;12(7):459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Razeeb KM, Dalton E, Cross GLW, Robinson AJ. Present and future thermal interface materials for electronic devices. Int Mater Rev. 2018;63(1):1–21.

    Article  CAS  Google Scholar 

  3. Yuvaraja S, Khandelwal V, Tang X, Li X. Wide bandgap semiconductor-based integrated circuits. Chip. 2023;2: 100072.

    Article  Google Scholar 

  4. Sadique H, Murtaza Q. Heat transfer augmentation in microchannel heat sink using secondary flows: a review. Int J Heat Mass Transf. 2022;194: 123063.

    Article  Google Scholar 

  5. Back D, Drummond KP, Sinanis MD, Weibel JA, Garimella SV, Peroulis D, et al. Design, fabrication, and characterization of a compact hierarchical manifold microchannel heat sink array for two-phase cooling. IEEE Trans Compon Packag Manuf Technol. 2019;9(7):1291–300.

    Article  CAS  Google Scholar 

  6. Mat MNH, Fidaa MZM. Impact of MXene nanoparticle on thermohydraulic performance in a microchannel heat sink: effect of nanoparticle size. Microfluid Nanofluid. 2023;27(1):1.

    Article  CAS  Google Scholar 

  7. Ambreen T, Saleem A, Park CW. Thermal efficiency of eco-friendly MXene based nanofluid for performance enhancement of a pin-fin heat sink: experimental and numerical analyses. Int J Heat Mass Transf. 2022;186: 122451.

    Article  CAS  Google Scholar 

  8. Munimathan A, Sathish T, Mohanavel V, Karthick A, Madavan R, Subbiah R, et al. Investigation on heat transfer enhancement in microchannel using Al2O3/water nanofluids. Int J Photoenergy. 2021;2021:1–9.

    Article  Google Scholar 

  9. Shamsuddin HS, Estelle P, Navas J, Mohd-Ghazali N, Mohamad M. Effects of surfactant and nanofluid on the performance and optimization of a microchannel heat sink. Int J Heat Mass Transf. 2021;175: 121336.

    Article  CAS  Google Scholar 

  10. Sreeraj P, Thirumalai Kumaran S, Uthayakumar M, Suresh Kumar S, Sivasubramanian M, Pethuraj M. Flow and heat transfer behaviour of Al2O3-CUO/water hybrid nano-fluid in rectangular microchannels. Int J Ambient Energy. 2022;43(1):4917–27.

    Article  CAS  Google Scholar 

  11. Ali AM, Rona A, Kadhim HT, Angelino M, Gao S. Thermo-hydraulic performance of a circular microchannel heat sink using swirl flow and nanofluid. Appl Therm Eng. 2021;191: 116817.

    Article  CAS  Google Scholar 

  12. Ali AM, Angelino M, Rona A. Numerical analysis on the thermal performance of microchannel heat sinks with Al2O3 nanofluid and various fins. Appl Therm Eng. 2021;198: 117458.

    Article  CAS  Google Scholar 

  13. Jamal-Eddine S, Youssef E-S, Najim S, editors. Numerical analysis of the thermal performance of a nanofluid water-Al2O3 in a heat sink with rectangular microchannel. In: 2020 IEEE 2nd international conference on electronics, control, optimization and computer science (ICECOCS). 2020; IEEE.

  14. He W, Mashayekhi R, Toghraie D, Akbari OA, Li Z, Tlili I. Hydrothermal performance of nanofluid flow in a sinusoidal double layer microchannel in order to geometric optimization. Int Commun Heat Mass Transfer. 2020;117: 104700.

    Article  CAS  Google Scholar 

  15. Ansari D, Jeong JH. A silicon-diamond microchannel heat sink for die-level hotspot thermal management. Appl Therm Eng. 2021;194: 117131.

    Article  CAS  Google Scholar 

  16. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2(5):126–9.

    Article  Google Scholar 

  17. Sepehrnia M, Rahmati A. Numerical investigating the gas slip flow in the microchannel heat sink using different materials. Chall Nano Micro Scale Sci Technol. 2018;6:44–50.

    Google Scholar 

  18. Alfaryjat A, Mohammed H, Adam NM, Stanciu D, Dobrovicescu A. Numerical investigation of heat transfer enhancement using various nanofluids in hexagonal microchannel heat sink. Therm Sci Eng Prog. 2018;5:252–62.

    Article  Google Scholar 

  19. Anasori B, Gogotsi ÛG. 2D metal carbides and nitrides (MXenes). Cham: Springer; 2019.

    Book  Google Scholar 

  20. Abdollahi A, Mohammed HA, Vanaki SM, Sharma RN. Numerical investigation of fluid flow and heat transfer of nanofluids in microchannel with longitudinal fins. Ain Shams Eng J. 2018;9(4):3411–8.

    Article  Google Scholar 

  21. Das L, Habib K, Saidur R, Aslfattahi N, Yahya SM, Rubbi F. Improved thermophysical properties and energy efficiency of aqueous ionic liquid/mxene nanofluid in a hybrid pv/t solar system. Nanomaterials. 2020;10(7):1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Welty J, Rorrer GL, Foster DG. Fundamentals of momentum, heat, and mass transfer. Hoboken: Wiley; 2020.

    Google Scholar 

  23. Agrawal A, Kushwaha HM, Jadhav RS, Agrawal A, Kushwaha HM, Jadhav RS. Introduction to microscale flows and mathematical modelling. Microscale Flow and Heat Transfer: Mathematical Modelling and Flow Physics. 2020;1–23.

  24. Cooke T, Steinke F, Wallraven C, Bülthoff HH, editors. A similarity-based approach to perceptual feature validation. In: Proceedings of the 2nd symposium on applied perception in graphics and visualization. 2005.

  25. Li Y, **a G, Ma D, Jia Y, Wang J. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs. Int J Heat Mass Transf. 2016;98:17–28.

    Article  Google Scholar 

  26. Prajapati YK. Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink. Int J Heat Mass Transf. 2019;137:1041–52.

    Article  CAS  Google Scholar 

  27. Al-Rashed AA, Shahsavar A, Rasooli O, Moghimi M, Karimipour A, Tran MD. Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink. Int Commun Heat Mass Transfer. 2019;104:118–26.

    Article  CAS  Google Scholar 

  28. Jamshidmofid M, Bahiraei M. Thermohydraulic assessment of a novel hybrid nanofluid containing cobalt oxide-decorated reduced graphene oxide nanocomposite in a microchannel heat sink with sinusoidal cavities and rectangular ribs. Int Commun Heat Mass Transfer. 2022;131: 105769.

    Article  CAS  Google Scholar 

  29. Sarvar-Ardeh S, Rafee R, Rashidi S. Hybrid nanofluids with temperature-dependent properties for use in double-layered microchannel heat sink; hydrothermal investigation. J Taiwan Inst Chem Eng. 2021;124:53–62.

    Article  CAS  Google Scholar 

  30. Thansekhar M, Anbumeenakshi C. Experimental investigation of thermal performance of microchannel heat sink with nanofluids Al2O3/Water and SiO2/water. Exp Tech. 2017;41:399–406.

    Article  Google Scholar 

  31. Li Z, Khaled U, Al-Rashed AA, Goodarzi M, Sarafraz M, Meer R. Heat transfer evaluation of a micro heat exchanger cooling with spherical carbon-acetone nanofluid. Int J Heat Mass Transf. 2020;149: 119124.

    Article  CAS  Google Scholar 

  32. Tran N, Chang Y-J, Wang C-C. Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of Al2O3 and TiO2. Int J Heat Mass Transf. 2018;117:787–98.

    Article  CAS  Google Scholar 

  33. Sarafraz M, Yang B, Pourmehran O, Arjomandi M, Ghomashchi R. Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel. Int Commun Heat Mass Transfer. 2019;107:24–33.

    Article  CAS  Google Scholar 

  34. Duangthongsuk W, Wongwises S. An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in microchannel heat sink with multiple zigzag flow channel structures. Exp Thermal Fluid Sci. 2017;87:30–9.

    Article  CAS  Google Scholar 

  35. Sarafraz M, Nikkhah V, Nakhjavani M, Arya A. Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment. Exp Thermal Fluid Sci. 2018;91:509–19.

    Article  CAS  Google Scholar 

  36. Naranjani B, Roohi E, Ebrahimi A. Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofluids. J Therm Anal Calorim. 2021;146:2549–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Ministry of Higher Education (MOHE) through the Fundamental Research Grant Scheme (FRGS/1/2021/TK0/UTM/02/98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Nur Hidayat Mat.

Ethics declarations

Conflict of interest

The authors declare no relevant competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mat, M.N.H., Radzie, N.R.N. & Saidur, R. Thermohydraulic performance of MXene-based nanofluid in a microchannel heat sink: effect of volume fraction. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13388-x

Keywords

Navigation