Log in

Thermal analysis of Casson nanofluid flow over exponentially/horizontally stretching cylinders with physical conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat transfer phenomena has become significant in engineering and industrial processes due to application of nanoparticles with enhanced thermal characteristics. The major goal of this study is to examine the heat transfer of Casson nanofluid with the suspension of Copper Cu into the base fluid water in the presence of temperature dependent thermal conductivity, heat source and thermal slip. Casson fluid is a type of non-Newtonian fluid and has gained attention for their distinct rheological properties and has potential practical applications in heat exchangers, food industry, manufacturing processes, biomedical treatments, etc. The flow is considered over horizontal and exponentially stretching cylinders. Nonlinear ordinary differential equations are attained by reforming the governing equations with the contribution of similarity variables. The dimensionless system is solved by MATLAB package \(\text{bvp}4\text{c}\). The results are obtained graphically and numerically. Consequences of various dimensionless quantities such as curvature parameter \(k\), Eckert number \(\text{Ec}\), Casson fluid parameter β, Thermal slip parameter \(\gamma \), stretching parameter λ, nano-shapes \(n\), heat source parameter \({Q}_{\text{H}}\) and volume fraction ϕ on temperature and velocity field for both horizontal and exponential cylinders are presented graphically and in tabular form. In this comparative study, we find out that the momentum boundary layer is dominant for exponential cylinder while the thermal boundary layer is more effective for horizontal cylinder as compared to exponential. Moreover, temperature enhances for horizontal and reduces for exponential cylinder with varying values of thermal slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Crane LJ. Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP. 1970;21(4):645–7.

    Article  Google Scholar 

  2. Wang CY. Fluid flow due to a stretching cylinder. Phys fluids. 1988;31(3):466–8.

    Article  Google Scholar 

  3. Brady JF, Acrivos A. Steady flow in a channel or tube with an accelerating surface velocity. An exact solution to the Navier stokes equations with reverse flow. J Fluid Mech. 1981;112:127–50.

    Article  CAS  Google Scholar 

  4. Ishak A, Nazar R, Pop I. Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder. Appl Math Model. 2008;32(10):2059–66.

    Article  Google Scholar 

  5. Wang CY. Natural convection on a vertical stretching cylinder. Commun Nonlinear Sci Numer Simul. 2012;17(3):1098–103.

    Article  Google Scholar 

  6. Ishak A, Nazar R, Pop I. Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Convers Manag. 2008;49(11):3265–9.

    Article  Google Scholar 

  7. Munawar S, Ali A, Mehmood A. Thermal analysis of the flow over an oscillatory stretching cylinder. Phys Scr. 2012;86(6):065401.

    Article  CAS  Google Scholar 

  8. Mukhopadhyay S. MHD boundary layer slip flow along a stretching cylinder. Ain Shams Eng J. 2013;4(2):317–24.

    Article  Google Scholar 

  9. Khan M, Malik R, Hussain M. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder. AIP Adv. 2016;6(5):055315.

    Article  Google Scholar 

  10. Pandey AK, Kumar M. Boundary layer flow and heat transfer analysis on Cu-water nanofluid flow over a stretching cylinder with slip. Alex Eng J. 2017;56(4):671–7.

    Article  Google Scholar 

  11. Rangi RR, Ahmad N. Boundary layer flow past a stretching cylinder and heat transfer with variable thermal conductivity. Appl Math. 2012;3:205.

    Article  Google Scholar 

  12. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab., IL (United States). 1995.

  13. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Trans. 2009;52(13–14):3187–96.

    Article  Google Scholar 

  14. Khan WA, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Trans. 2010;53(11–12):2477–83.

    Article  CAS  Google Scholar 

  15. Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB. Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Appl Math Mech. 2012;33(1):25–36.

    Article  Google Scholar 

  16. Ibrahim W, Shankar B, Nandeppanavar MM. MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int J Heat Mass Transf. 2013;56(1–2):1–9.

    Article  CAS  Google Scholar 

  17. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids, communicated to J Heat Transfer. Trans ASME. 2001

  18. Nadeem S, Rehman A. Axisymmetric stagnation flow of a nanofluid in a moving cylinder. Comput Math Model. 2013;24(2):293–306.

    Article  Google Scholar 

  19. Sheikholeslami M. Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng. 2015;37(6):1623–33.

    Article  CAS  Google Scholar 

  20. Acharya N. Magnetized hybrid nanofluid flow within a cube fitted with circular cylinder and its different thermal boundary conditions. J Magn Magn Mater. 2022;15(564):170167.

    Article  Google Scholar 

  21. Acharya N. On the magnetohydrodynamic natural convective alumina nanofluidic transport inside a triangular enclosure fitted with fins. J Indian Chem Soc. 2022;99(12):100784.

    Article  CAS  Google Scholar 

  22. Dawar A, Acharya N. Unsteady mixed convective radiative nanofluid flow in the stagnation point region of a revolving sphere considering the influence of nanoparticles diameter and nanolayer. J Indian Chem Soc. 2022;99(10):100716.

    Article  CAS  Google Scholar 

  23. Sulochana C, Sandeep N. Stagnation point flow and heat transfer behavior of Cu–water nanofluid towards horizontal and exponentially stretching/shrinking cylinders. Appl Nanosci. 2016;6:451–9.

    Article  CAS  Google Scholar 

  24. Murtaza S, Kumam P, Ahmad Z, Sitthithakerngkiet K, Sutthibutpong T. Fractional model of brinkman-type nanofluid flow with fractional order Fourier’s and Fick’s Laws. Fractals. 2023;20:2340199.

    Article  Google Scholar 

  25. Murtaza S, Kumam P, Ahmad Z, Ramzan M, Ali I, Saeed A. Computational simulation of unsteady squeezing hybrid nanofluid flow through a horizontal channel comprised of metallic nanoparticles. J Nanofluids. 2023;12(5):1327–34.

    Article  Google Scholar 

  26. Acharya N. On the hydrothermal behavior and entropy analysis of buoyancy driven magnetohydrodynamic hybrid nanofluid flow within an octagonal enclosure fitted with fins: application to thermal energy storage. J Energy Storage. 2022;1(53):105198.

    Article  Google Scholar 

  27. Acharya N, Mabood F, Badruddin IA. Thermal performance of unsteady mixed convective Ag/MgO nanohybrid flow near the stagnation point domain of a spinning sphere. Int Commun Heat Mass Trans. 2022;1(134):106019.

    Article  Google Scholar 

  28. Acharya N. Buoyancy driven magnetohydrodynamic hybrid nanofluid flow within a circular enclosure fitted with fins. Int Commun Heat Mass Trans. 2022;1(133):105980.

    Article  Google Scholar 

  29. Acharya N, Chamkha AJ. On the magnetohydrodynamic Al2O3-water nanofluid flow through parallel fins enclosed inside a partially heated hexagonal cavity. Int Commun Heat Mass Trans. 2022;1(132):105885.

    Article  Google Scholar 

  30. Murtaza S, Ahmad Z, Ali IE, Akhtar Z, Tchier F, Ahmad H, Yao SW. Analysis and numerical simulation of fractal-fractional order non-linear couple stress nanofluid with cadmium telluride nanoparticles. J King Saud Univ-Sci. 2023;35(4):102618.

    Article  Google Scholar 

  31. Murtaza S, Kumam P, Bilal M, Sutthibutpong T, Rujisamphan N, Ahmad Z. Parametric simulation of hybrid nanofluid flow consisting of cobalt ferrite nanoparticles with second-order slip and variable viscosity over an extending surface. Nanotechnol Rev. 2023;12(1):20220533.

    Article  CAS  Google Scholar 

  32. Murtaza S, Kumam P, Sutthibutpong T, Suttiarporn P, Srisurat T, Ahmad Z. Fractal-fractional analysis and numerical simulation for the heat transfer of ZnO+ Al2O3+ TiO2/DW based ternary hybrid nanofluid. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik. 2023;21:e202300459.

    Google Scholar 

  33. Bhattacharyya K. MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation. J Thermodyn. 2013;2013:169674.

    Article  Google Scholar 

  34. Mustafa M, Hayat T, Ioan P, Hendi A. Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet. Zeitschrift für Naturforschung A. 2012;67(1–2):70–6.

    Article  CAS  Google Scholar 

  35. Raju CSK, Sandeep N, Sugunamma V, Babu MJ, Reddy JR. Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface. Eng Sci Technol Int J. 2016;19(1):45–52.

    Google Scholar 

  36. Murtaza S, Kumam P, Ahmad Z, Seangwattana T, Ali IE. Numerical analysis of newly developed fractal-fractional model of Casson fluid with exponential memory. Fractals. 2022;30(05):2240151.

    Article  Google Scholar 

  37. Khalid A, Khan I, Shafie S. Exact solutions for unsteady free convection flow of Casson fluid over an oscillating vertical plate with constant wall temperature. Abstr Appl Anal. 2015;2015:1–8.

    Article  Google Scholar 

  38. Akbar NS. Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: application in crude oil refinement. J Magn Magn Mater. 2015;378:463–8.

    Article  Google Scholar 

  39. Hayat T, Shehzad SA, Alsaedi A. Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid. Appl Math Mech. 2012;33(10):1301–12.

    Article  Google Scholar 

  40. Hussanan A, Zuki Salleh M, Tahar RM, Khan I. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating. PLoS ONE. 2014;9(10):e108763.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Najib N, Bachok N, Arifin NM, Ishak A. Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. Sci Rep. 2014;4(1):1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Tumreen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumreen, M., Qasim, M. Thermal analysis of Casson nanofluid flow over exponentially/horizontally stretching cylinders with physical conditions. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13378-z

Keywords

Navigation