Log in

A comprehensive review on vortex generator supported heat transfer augmentation techniques in heat exchangers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of passive heat transfer enhancement strategies to improve heat transfer performance in heat exchanger has received a lot of attention. In this paper, passive heat transfer enhancement methods utilizing vortex generation in the flow field have been discussed in detail. Three classic techniques for improving passive heat transfer in heat exchangers have been identified in the literature: boundary layer deformation, swirl formation, and flow destabilization. The longitudinal vortices generated by vortex generators have been found to reduce the wake region behind tubes, thus increasing turbulence strength and flow mixing. This review takes into account the effect of geometrical variations of vortex generators on thermo-fluid performance. Delta winglet vortex generators outperform rectangle-winglet vortex generators in terms of heat transfer performance. However, using hole-type rectangular winglets has shown promising results with more than 16% enhancement in thermo-fluid performance. Among several winglet angles examined by various researchers, the attack angle in the range of 30°–45° has resulted in optimum performance. Some variations of rectangular winglets such as wavy winglets have been reported to enhance the overall thermo-fluid performance by 8–16%. This paper provides insight into different experimental and numerical techniques for the enhancement of thermo-fluid performance of cross-flow heat exchangers. This review article can be very helpful to industrial and academic researchers working in the area of compact and efficient heat exchanger design with enhanced thermo-fluid performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Webb RL. Principles of enhanced heat transfer. New York: Wiley; 1994.

    Google Scholar 

  2. Ghadirijafarbeigloo S, Zamzamian AH, Yaghoubi M. 3-D Numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy Proc. 2014;49:373–80. https://doi.org/10.1016/j.egypro.2014.03.040.

    Article  Google Scholar 

  3. Amiri Delouei A, Naeimi H, Sajjadi H, Atashafrooz M, Imanparast M, Chamkha AJ. An active approach to heat transfer enhancement in indirect heaters of city gate stations: an experimental modeling. Appl Therm Eng. 2024;237: 121795. https://doi.org/10.1016/j.applthermaleng.2023.121795.

    Article  Google Scholar 

  4. Hedeshi M, Jalali A, Arabkoohsar A, Amiri Delouei A. Nanofluid as the working fluid of an ultrasonic-assisted double-pipe counter-flow heat exchanger. J Therm Anal Calorim. 2023;148:8579–91. https://doi.org/10.1007/s10973-023-12102-7.

    Article  CAS  Google Scholar 

  5. Amiri Delouei A, Sajjadi H, Atashafrooz M, Hesari M, Ben Hamida MB, Arabkoohsar A. Louvered fin-and-flat tube compact heat exchanger under ultrasonic excitation. Fire. 2023;6:13.

    Article  Google Scholar 

  6. Amiri Delouei A, Sajjadi H, Ahmadi G. Ultrasonic vibration technology to improve the thermal performance of CPU water-cooling systems: experimental investigation. Water. 2022;14:4000.

    Article  Google Scholar 

  7. Alam T, Kim M-H. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renew Sustain Energy Rev. 2018;81:813–39. https://doi.org/10.1016/j.rser.2017.08.060.

    Article  CAS  Google Scholar 

  8. Saidur R, Leong KY, Mohammed HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68. https://doi.org/10.1016/j.rser.2010.11.035.

    Article  CAS  Google Scholar 

  9. Bellahcene L, Sahel D, Yousfi A. Numerical study of shell and tube heat exchanger performance enhancement using nanofluids and baffling technique. J Adv Res Fluid Mech Therm Sci. 2021;80:42–55. https://doi.org/10.1016/j.pnucene.2022.104526.

    Article  CAS  Google Scholar 

  10. Ganvir RB, Walke PV, Kriplani VM. Heat transfer characteristics in nanofluid—a review. Renew Sustain Energy Rev. 2017;75:451–60. https://doi.org/10.1016/j.rser.2016.11.010.

    Article  Google Scholar 

  11. Ghazanfari V, Taheri A, Amini Y, Mansourzade F. Enhancing heat transfer in a heat exchanger: CFD study of twisted tube and nanofluid (Al2O3, Cu, CuO, and TiO2) effects. Case Stud Therm Eng. 2024;53: 103864. https://doi.org/10.1016/j.csite.2023.103864.

    Article  Google Scholar 

  12. Ghazanfari V, Imani M, Shadman MM, Amini Y, Zahakifar F. Numerical study on the thermal performance of the shell and tube heat exchanger using twisted tubes and Al2O3 nanoparticles. Prog Nucl Energy. 2023;155: 104526. https://doi.org/10.1016/j.pnucene.2022.104526.

    Article  CAS  Google Scholar 

  13. Sadeghianjahromi A, Wang C-C. Heat transfer enhancement in fin-and-tube heat exchangers—a review on different mechanisms. Renew Sustain Energy Rev. 2021;137: 110470. https://doi.org/10.1016/j.rser.2020.110470.

    Article  CAS  Google Scholar 

  14. Amini Y, Mokhtari M, Haghshenasfard M, Barzegar GM. Heat transfer of swirling im**ing jets ejected from Nozzles with twisted tapes utilizing CFD technique. Case Stud Therm Eng. 2015;6:104–15. https://doi.org/10.1016/j.csite.2015.08.001.

    Article  Google Scholar 

  15. Kumar Sarangi S, Prasad MD. Effect of tube shape on thermo-fluid performance of a winglet supported fin-and-tube heat exchanger having staggered tubes. Mater Today Proc. 2021;41:228–32. https://doi.org/10.1016/j.matpr.2020.08.745.

    Article  CAS  Google Scholar 

  16. Kim N-H, Kim C-H, Han H-S. An airside performance of the wavy fin-and-tube heat exchangers having oval tubes. Appl Therm Eng. 2021;190: 116807. https://doi.org/10.1016/j.applthermaleng.2021.116807.

    Article  Google Scholar 

  17. Deepakkumar R, Jayavel S. Air side performance of finned-tube heat exchanger with combination of circular and elliptical tubes. Appl Therm Eng. 2017;119:360–72. https://doi.org/10.1016/j.applthermaleng.2017.03.082.

    Article  Google Scholar 

  18. Fiebig M, Valencia A, Mitra NK. Local heat transfer and flow losses in fin-and-tube heat exchangers with vortex generators: a comparison of round and flat tubes. Exp Therm Fluid Sci. 1994;8:35–45. https://doi.org/10.1016/0894-1777(94)90071-X.

    Article  CAS  Google Scholar 

  19. He Y-L, Chu P, Tao W-Q, Zhang Y-W, **e T. Analysis of heat transfer and pressure drop for fin-and-tube heat exchangers with rectangular winglet-type vortex generators. Appl Therm Eng. 2013;61:770–83. https://doi.org/10.1016/j.applthermaleng.2012.02.040.

    Article  Google Scholar 

  20. Agarwal S, Sharma RP. Numerical investigation of heat transfer enhancement using hybrid vortex generator arrays in fin-and-tube heat exchangers. J Therm Sci Eng Appl. 2016. https://doi.org/10.1115/1.4033213.

    Article  Google Scholar 

  21. Sinha A, Chattopadhyay H, Iyengar AK, Biswas G. Enhancement of heat transfer in a fin-tube heat exchanger using rectangular winglet type vortex generators. Int J Heat Mass Transf. 2016;101:667–81. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.032.

    Article  CAS  Google Scholar 

  22. Sarangi SK, Mishra DP. Effect of winglet location on heat transfer of a fin-and-tube heat exchanger. Appl Therm Eng. 2017;116:528–40. https://doi.org/10.1016/j.applthermaleng.2017.01.106.

    Article  Google Scholar 

  23. Naik H, Tiwari S. Effect of winglet location on performance of fin-tube heat exchangers with inline tube arrangement. Int J Heat Mass Transf. 2018;125:248–61. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.071.

    Article  Google Scholar 

  24. Sarangi SK, Mishra DP, Mishra P. Numerical analysis of thermofluid performance of fin-and-tube heat transfer surface using rectangular winglets. J Heat Transf. 2019. https://doi.org/10.1115/1.4044392.

    Article  Google Scholar 

  25. Sarangi SK, Mishra DP, Mishra P. Parametric investigation of wavy rectangular winglets for heat transfer enhancement in a fin-and–tube heat transfer surface. J Appl Fluid Mech. 2020;13:615–28. https://doi.org/10.29252/jafm.13.02.30545.

    Article  Google Scholar 

  26. Qian Z, Wang Q, Cheng J. Analysis of heat and resistance performance of plate fin-and-tube heat exchanger with rectangle-winglet vortex generator. Int J Heat Mass Transf. 2018;124:1198–211. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.037.

    Article  Google Scholar 

  27. Modi AJ, Rathod MK. Experimental investigation of heat transfer enhancement and pressure drop of fin-and-circular tube heat exchangers with modified rectangular winglet vortex generator. Int J Heat Mass Transf. 2022;189: 122742. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122742.

    Article  Google Scholar 

  28. Saini P, Dhar A, Powar S. Performance enhancement of fin and tube heat exchanger employing curved trapezoidal winglet vortex generator with circular punched holes. Int J Heat Mass Transf. 2023;209: 124142. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124142.

    Article  Google Scholar 

  29. Gupta A, Roy A, Gupta S, Gupta M. Numerical investigation towards implementation of punched winglet as vortex generator for performance improvement of a fin-and-tube heat exchanger. Int J Heat Mass Transf. 2020;149: 119171. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119171.

    Article  Google Scholar 

  30. Zhao L, Qian Z, Wang X, Wang Q, Li C, Zhang Z. Analysis of the thermal improvement of plate fin-tube heat exchanger with straight and curved rectangular winglet vortex generators. Case Stud Therm Eng. 2023;51: 103612. https://doi.org/10.1016/j.csite.2023.103612.

    Article  Google Scholar 

  31. Hu D, Zhang Q, Song K, Gao C, Zhang K, Su M, et al. Performance optimization of a wavy finned-tube heat exchanger with staggered curved vortex generators. Int J Therm Sci. 2023;183: 107830. https://doi.org/10.1016/j.ijthermalsci.2022.107830.

    Article  Google Scholar 

  32. Gupta S, Roy A, Gupta A. Computer-aided engineering analysis for the performance augmentation of a fin-tube heat exchanger using vortex generator. Concurr Eng. 2020;28:47–57. https://doi.org/10.1177/1063293X19891770.

    Article  Google Scholar 

  33. Russell CMB, Jones T V., Lee GH. Heat transfer enhancement using vortex generators. In: Proceeding international heat transfer conference 7 [Internet]. Connecticut: Begellhouse; 1982. pp. 283–8. https://doi.org/10.1615/IHTC7.1850

  34. Haque MR, Rahman A. Numerical investigation of convective heat transfer characteristics of circular and oval tube banks with vortex generators. J Mech Sci Technol. 2020;34:457–67. https://doi.org/10.1007/s12206-019-1044-0.

    Article  Google Scholar 

  35. Turk AY, Junkhan GH. Heat transfer enhancement downstream of vortex generators on a flat plate. In: Proceeding international heat transfer conference 8. Begellhouse; 1986. pp. 2903–8. https://doi.org/10.1615/IHTC8.1450

  36. Wu JM, Tao WQ. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: verification of field synergy principle. Int J Heat Mass transf. 2008;51:1179–91. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.032.

    Article  CAS  Google Scholar 

  37. Wu JM, Tao WQ. Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator. Part B: parametric study of major influence factors. Int J Heat Mass Transf. 2008;51:3683–92. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.031.

    Article  CAS  Google Scholar 

  38. Khanjian A, Habchi C, Russeil S, Bougeard D, Lemenand T. Effect of rectangular winglet pair roll angle on the heat transfer enhancement in laminar channel flow. Int J Therm Sci. 2017;114:1–14. https://doi.org/10.1016/j.ijthermalsci.2016.12.010.

    Article  CAS  Google Scholar 

  39. Berber A, Gürdal M, Yetimoğlu M. Experimental study on the heat transfer enhancement in a rectangular channel with curved winglets. Exp Heat Transf. 2022;35:797–817. https://doi.org/10.1080/08916152.2021.1951897.

    Article  CAS  Google Scholar 

  40. Ali E, Park J, Park H. Numerical investigation of enhanced heat transfer in a rectangular channel with winglets. Heat Transf Eng. 2021;42:695–705. https://doi.org/10.1080/01457632.2020.1723845.

    Article  CAS  Google Scholar 

  41. Torii K, Kwak KM, Nishino K. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers. Int J Heat Mass Transf. 2002;45:3795–801. https://doi.org/10.1016/S0017-9310(02)00080-7.

    Article  Google Scholar 

  42. Pesteei SM, Subbarao PMV, Agarwal RS. Experimental study of the effect of winglet location on heat transfer enhancement and pressure drop in fin-tube heat exchangers. Appl Therm Eng. 2005;25:1684–96. https://doi.org/10.1016/j.applthermaleng.2004.10.013.

    Article  Google Scholar 

  43. Joardar A, Jacobi AM. Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers. Int J Refrig. 2008;31:87–97. https://doi.org/10.1016/j.ijrefrig.2007.04.011.

    Article  CAS  Google Scholar 

  44. Joardar A, Jacobi AM. A numerical study of flow and heat transfer enhancement using an array of delta-winglet vortex generators in a fin-and-tube heat exchanger. J Heat Transfer. 2007;129:1156–67. https://doi.org/10.1115/1.2740308.

    Article  CAS  Google Scholar 

  45. Wu JM, Tao WQ. Investigation on laminar convection heat transfer in fin-and-tube heat exchanger in aligned arrangement with longitudinal vortex generator from the viewpoint of field synergy principle. Appl Therm Eng. 2007. https://doi.org/10.1016/j.applthermaleng.2007.01.025.

    Article  Google Scholar 

  46. Lei Y-G, He Y-L, Tian L-T, Chu P, Tao W-Q. Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators. Chem Eng Sci. 2010. https://doi.org/10.1016/j.ces.2009.10.017.

    Article  Google Scholar 

  47. Tian L, He Y, Chu P, Tao W. Numerical study of flow and heat transfer enhancement by using delta winglets in a triangular wavy fin-and-tube heat exchanger. J Heat Transfer. 2009. https://doi.org/10.1115/1.3139106.

    Article  Google Scholar 

  48. Lemouedda A, Breuer M, Franz E, Botsch T, Delgado A. Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger. Int J Heat Mass Transf. 2010;53:5386–99. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.017.

    Article  CAS  Google Scholar 

  49. Wu JM, Tao WQ. Impact of delta winglet vortex generators on the performance of a novel fin-tube surfaces with two rows of tubes in different diameters. Energy Convers Manag. 2011;52:2895–901. https://doi.org/10.1016/j.enconman.2011.03.002.

    Article  Google Scholar 

  50. Hwang SW, Kim DH, Min JK, Jeong JH. CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators. J Mech Sci Technol. 2012;26:2949–58. https://doi.org/10.1007/s12206-012-0702-2.

    Article  Google Scholar 

  51. Arora A, Subbarao PMV, Agarwal RS. Numerical optimization of location of ‘common flow-up’ delta winglets for inline aligned finned tube heat exchanger. Appl Therm Eng. 2015;82:329–40. https://doi.org/10.1016/j.applthermaleng.2015.02.071.

    Article  Google Scholar 

  52. Salviano LO, Dezan DJ, Yanagihara JI. Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: response surface methodology and direct optimization. Int J Heat Mass Transf. 2015;82:373–87. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.072.

    Article  Google Scholar 

  53. Batista J, Trp A, Lenic K. Heat transfer enhancement of crossflow air-to-water fin-and-tube heat exchanger by using delta-winglet type vortex generators. Energies. 2022;15:2070. https://doi.org/10.3390/en15062070.

    Article  CAS  Google Scholar 

  54. Saini P, Dhar A, Powar S. Performance enhancement of fin and tube heat exchanger employing curved trapezoidal winglet vortex generator with circular punched holes. Int J Heat Mass Transf. 2023;209: 124142. https://doi.org/10.1016/j.ijft.2023.100452.

    Article  Google Scholar 

  55. Syaiful, Nabilah H, Utomo MSKT, Suprihanto A, Soetanto MF. Numerical simulation of heat transfer enhancement from tubes surface to airflow using concave delta winglet vortex generators. Results Eng. 2022;16:100710. https://doi.org/10.1016/j.rineng.2022.100710.

    Article  Google Scholar 

  56. Shi W, Liu T, Song K, Zhang Q, Hu W, Wang L. The optimal longitudinal location of curved winglets for better thermal performance of a finned-tube heat exchanger. Int J Therm Sci. 2021;167: 107035. https://doi.org/10.1016/j.ijthermalsci.2021.107035.

    Article  Google Scholar 

  57. Chen Y, Fiebig M, Mitra NK. Conjugate heat transfer of a finned oval tube with a punched longitudinal vortex generator in form of a delta winglet—parametric investigations of the winglet. Int J Heat Mass Transf. 1998;41:3961–78. https://doi.org/10.1016/S0017-9310(98)00076-3.

    Article  CAS  Google Scholar 

  58. Chen Y, Fiebig M, Mitra NK. Heat transfer enhancement of a finned oval tube with punched longitudinal vortex generators in-line. Int J Heat Mass Transf. 1998;41:4151–66. https://doi.org/10.1016/S0017-9310(98)00130-6.

    Article  CAS  Google Scholar 

  59. Allison CB, Dally BB. Effect of a delta-winglet vortex pair on the performance of a tube–fin heat exchanger. Int J Heat Mass Transf. 2007;50:5065–72. https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.003.

    Article  Google Scholar 

  60. Chu P, He YL, Lei YG, Tian LT, Li R. Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators. Appl Therm Eng. 2009;29:859–76. https://doi.org/10.1016/j.applthermaleng.2008.04.021.

    Article  Google Scholar 

  61. Tiwari S, Maurya D, Biswas G, Eswaran V. Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets. Int J Heat Mass Transf. 2003;46:2841–56. https://doi.org/10.1016/S0017-9310(03)00047-4.

    Article  Google Scholar 

  62. Fiebig M, Kallweit P, Mitra NK. Wing type vortex generators for heat transfer enhancement. In Proceeding International Heat Transfer Conference 8. Begellhouse; 1986. p. 2909–13. https://doi.org/10.1615/IHTC8.1460

  63. Fiebig M, Kallweit P, Mitra N, Tiggelbeck S. Heat transfer enhancement and drag by longitudinal vortex generators in channel flow. Exp Therm Fluid Sci. 1991;4:103–14. https://doi.org/10.1016/0894-1777(91)90024-L.

    Article  Google Scholar 

  64. Biswas G, Torii K, Fujii D, Nishino K. Numerical and experimental determination of flow structure and heat transfer effects of longitudinal vortices in a channel flow. Int J Heat Mass Transf. 1996;39:3441–51. https://doi.org/10.1016/0017-9310(95)00398-3.

    Article  CAS  Google Scholar 

  65. Hiravennavar SR, Tulapurkara EG, Biswas G. A note on the flow and heat transfer enhancement in a channel with built-in winglet pair. Int J Heat Fluid Flow. 2007;28:299–305. https://doi.org/10.1016/j.ijheatfluidflow.2006.03.030.

    Article  Google Scholar 

  66. Li H-Y, Chen C-L, Chao S-M, Liang G-F. Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. Int J Heat Mass Transf. 2013;67:666–77. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.042.

    Article  Google Scholar 

  67. Sinha A, Ashoke Raman K, Chattopadhyay H, Biswas G. Effects of different orientations of winglet arrays on the performance of plate-fin heat exchangers. Int J Heat Mass Transf. 2013;57:202–14. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.034.

    Article  Google Scholar 

  68. Leu J-S, Wu Y-H, Jang J-Y. Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. Int J Heat Mass Transf. 2004;47:4327–38. https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.031.

    Article  Google Scholar 

  69. Li MJ, Zhou WJ, Zhang JF, Fan JF, He YL, Tao WQ. Heat transfer and pressure performance of a plain fin with radiantly arranged winglets around each tube in fin-and-tube heat transfer surface. Int J Heat Mass Transf. 2014;70:734–44. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.024.

    Article  Google Scholar 

  70. Gholami AA, Wahid MA, Mohammed HA. Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with wavy rectangular winglet-type vortex generators. Int Commun Heat Mass Transf. 2014;54:132–40. https://doi.org/10.1016/j.icheatmasstransfer.2014.02.016.

    Article  Google Scholar 

  71. Wang CC, Chen KY, Liaw JS, Tseng CY. An experimental study of the air-side performance of fin-and-tube heat exchangers having plain, louver, and semi-dimple vortex generator configuration. Int J Heat Mass Transf. 2015;80:281–7. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.030.

    Article  Google Scholar 

  72. Lin Z-M, Liu C-P, Lin M, Wang L-B. Numerical study of flow and heat transfer enhancement of circular tube bank fin heat exchanger with curved delta-winglet vortex generators. Appl Therm Eng. 2015;88:198–210. https://doi.org/10.1016/j.applthermaleng.2014.11.079.

    Article  Google Scholar 

  73. Song K, ** Z, Su M, Wang L, Wu X, Wang L. Effect of geometric size of curved delta winglet vortex generators and tube pitch on heat transfer characteristics of fin-tube heat exchanger. Exp Therm Fluid Sci. 2017. https://doi.org/10.1016/j.expthermflusci.2016.11.002.

    Article  Google Scholar 

  74. Brodnianská Z, Kotšmíd S. Heat transfer enhancement in the novel wavy shaped heat exchanger channel with cylindrical vortex generators. Appl Therm Eng. 2023;220: 119720. https://doi.org/10.1016/j.applthermaleng.2022.119720.

    Article  Google Scholar 

  75. Raihan MFB, Al-Asadi MT, Thompson HM. Management of conjugate heat transfer using various arrangements of cylindrical vortex generators in micro-channels. Appl Therm Eng. 2021;182: 116097. https://doi.org/10.1016/j.applthermaleng.2020.116097.

    Article  Google Scholar 

  76. Sarangi SK, Mishra DP. Thermo-fluid performance evaluation of a split-winglet supported elliptical tube type Fin-and-tube heat transfer surface. Sci Iran. 2021. https://doi.org/10.24200/sci.2021.56552.4784.

    Article  Google Scholar 

  77. Lin C-N, Liu Y-W, Leu J-S. Heat transfer and fluid flow analysis for plate-fin and oval tube heat exchangers with vortex generators. Heat Transf Eng. 2008;29:588–96. https://doi.org/10.1080/01457630801922279.

    Article  CAS  Google Scholar 

  78. Gholami A, Wahid MA, Mohammed HA. Thermal–hydraulic performance of fin-and-oval tube compact heat exchangers with innovative design of corrugated fin patterns. Int J Heat Mass Transf. 2017;106:573–92. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.028.

    Article  CAS  Google Scholar 

  79. Edwards FJ, Alker CJR. The improvement of forced convection surface heat transfer using surface protrusions in the form of (A) cubes and (B) Vortex Generators. In: Proceeding international heat transfer conference digital laboratory 5. Begellhouse; 1974. pp. 244–248. https://doi.org/10.1615/IHTC5.2140

  80. Davidson ASL. Effect of inclined vortex generators on heat transfer enhancement in a three-dimensional channel. Numer Heat Transf Part A Appl. 2001;39:433–48. https://doi.org/10.1080/10407780121572.

    Article  Google Scholar 

  81. Zhou G, Ye Q. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Appl Therm Eng. 2012;37:241–8. https://doi.org/10.1016/j.applthermaleng.2011.11.024.

    Article  CAS  Google Scholar 

  82. Zhou G, Feng Z. Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes. Int J Therm Sci. 2014;78:26–35. https://doi.org/10.1016/j.ijthermalsci.2013.11.010.

    Article  Google Scholar 

  83. Caliskan S. Experimental investigation of heat transfer in a channel with new winglet-type vortex generators. Int J Heat Mass Transf. 2014;78:604–14. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.043.

    Article  Google Scholar 

  84. Abdollahi A, Shams M. Optimization of heat transfer enhancement of nanofluid in a channel with winglet vortex generator. Appl Therm Eng. 2015;91:1116–26. https://doi.org/10.1016/j.applthermaleng.2015.08.066.

    Article  Google Scholar 

  85. Oneissi M, Habchi C, Russeil S, Bougeard D, Lemenand T. Novel design of delta winglet pair vortex generator for heat transfer enhancement. Int J Therm Sci. 2016;109:1–9. https://doi.org/10.1016/j.ijthermalsci.2016.05.025.

    Article  Google Scholar 

  86. Tang LH, Chu WX, Ahmed N, Zeng M. A new configuration of winglet longitudinal vortex generator to enhance heat transfer in a rectangular channel. Appl Therm Eng. 2016;104:74–84. https://doi.org/10.1016/j.applthermaleng.2016.05.056.

    Article  Google Scholar 

  87. Khargotra R, Kumar R, Nadda R, Dhingra S, Alam T, Dobrota D, et al. A review of different twisted tape configurations used in heat exchanger and their impact on thermal performance of the system. Heliyon. 2023;9:e16390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yuan M, Liu G, Zhang X, Zhang W, Yang Y, Song J, et al. Heat transfer enhancement for spiral finned tubes with triangular winglets. Int J Heat Mass Transf. 2023;205: 123918. https://doi.org/10.1016/j.ijheatmasstransfer.2023.123918.

    Article  CAS  Google Scholar 

  89. Bhattacharyya S. The effects of short length and full length swirl generators on heat transfer and flow fields in a solar air heater tube. J Therm Anal Calorim. 2020;140:1355–69.

    Article  CAS  Google Scholar 

  90. Mellal M, Benzeguir R, Sahel D, Ameur H. Hydro-thermal shell-side performance evaluation of a shell and tube heat exchanger under different baffle arrangement and orientation. Int J Therm Sci. 2017;121:138–49.

    Article  Google Scholar 

  91. Dastmalchi M, Sheikhzadeh GA, Arefmanesh A. Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm. Appl Therm Eng. 2017;119:1–9.

    Article  Google Scholar 

  92. Lotfi B, Sundén B, Wang Q. An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators. Appl Energy. 2016;162:1282–302.

    Article  Google Scholar 

  93. Bovand M, Rashidi S, Esfahani JA. Heat transfer enhancement and pressure drop penalty in porous solar heaters: numerical simulations. Sol Energy. 2016;123:145–59.

    Article  Google Scholar 

  94. Rashidi S, Esfahani JA, Rashidi A. A review on the applications of porous materials in solar energy systems. Renew Sustain Energy Rev. 2017;73:1198–210.

    Article  CAS  Google Scholar 

  95. Begag A, Saim R, Abboudi S, Öztop HF. Effect of internal and external corrugated surfaces on the characteristics of heat transfer and pressure drop in a concentric tube heat exchanger. Int J Therm Sci. 2021;165:106930.

    Article  Google Scholar 

  96. Córcoles-Tendero JI, Belmonte JF, Molina AE, Almendros-Ibáñez JA. Numerical simulation of the heat transfer process in a corrugated tube. Int J Therm Sci. 2018;126:125–36.

    Article  Google Scholar 

  97. Olfian H, Ajarostaghi SSM, Ebrahimnataj M. Development on evacuated tube solar collectors: a review of the last decade results of using nanofluids. Sol Energy. 2020;211:265–82.

    Article  CAS  Google Scholar 

  98. Laouer A, Arıcı M, Teggar M, Bouabdallah S, Yıldız Ç, Ismail KAR, et al. Effect of magnetic field and nanoparticle concentration on melting of Cu-Ice in a rectangular cavity under fluctuating temperatures. J Energy Storage. 2021;36:102421.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Birla Institute of Technology Mesra and Srinath University, Jamshedpur, for providing digital access to research articles.

Author information

Authors and Affiliations

Authors

Contributions

Shailesh Kumar Sarangi: Literature search, data analysis, and writing initial draft. Dipti Prasad Mishra: Idea for the article and critical revision of the work.

Corresponding author

Correspondence to Dipti Prasad Mishra.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarangi, S.K., Mishra, D.P. A comprehensive review on vortex generator supported heat transfer augmentation techniques in heat exchangers. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13369-0

Keywords

Navigation