Log in

Thermal analysis for evaluation of biodegradable films: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Plastic packaging has been widely used in utensils, equipment, packaging, among others. However, the widespread use of plastic materials, which originate from non-renewable sources, has generated a global pollution crisis due to its non-biodegradable profile, thus leading the scientific community and consumers to evaluate their choices. Therefore, studies on alternatives to prevent environmental damage have been carried out. The development of biodegradable packaging, produced with raw materials from renewable sources, such as polysaccharides, proteins, and others, has shown to be a viable alternative to minimize these problems. However, many challenges arise when using biodegradable compounds as a polymer matrix; thus, techniques that allow better knowledge of the materials can contribute significantly to improving the properties of interest in these packages, with an emphasis on thermal analysis. This review addressed the use of thermal analysis and experimental conditions to evaluate biodegradable films of different compositions, with an emphasis on thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). Small variations were observed for the experimental conditions, which can be associated with the different film constituents (polymer matrix, presence of nanocomposites and essential oils, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cheng H, Chen L, McClements DJ, Yang T, Zhang Z, Ren F, et al. Starch-based biodegradable packaging materials: a review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci Technol. 2021;114:70–82. https://doi.org/10.1016/j.tifs.2021.05.017.

    Article  CAS  Google Scholar 

  2. Anugrahwidya R, Armynah B, Tahir D. Bioplastics starch-based with additional fiber and nanoparticle: characteristics and biodegradation performance: a review. J Polym Environ. 2021;29:3459–76. https://doi.org/10.1007/s10924-021-02152-z.

    Article  CAS  Google Scholar 

  3. Sajad P, Kurush AS. A review of the applications of bioproteins in the preparation of biodegradable films and polymers. J Chem Lett. 2020;1:47–58. https://doi.org/10.22034/JCHEMLETT.2020.111200.

    Article  Google Scholar 

  4. Brandon JA, Jones W, Ohman MD. Multidecadal increase in plastic particles in coastal ocean sediments. Sci Adv. 2019. https://doi.org/10.1126/sciadv.aax0587.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yong H, Wang X, Zhang X, Liu Y, Qin Y, Liu J. Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocoll. 2019;94:93–104. https://doi.org/10.1016/j.foodhyd.2019.03.012.

    Article  CAS  Google Scholar 

  6. Zhong Y, Godwin P, ** Y, **ao H. Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Adv Ind Eng Polym Res. 2020;3:27–35. https://doi.org/10.1016/j.aiepr.2019.11.002.

    Article  Google Scholar 

  7. Hassannia-Kolaee M, Shahabi-Ghahfarrokhi I, Hassannia-Kolaee M. Development and characterization of a novel ecofriendly biodegradable whey protein concentrate film with nano-SiO2. Inte J Food Eng. 2018. https://doi.org/10.1515/ijfe-2017-0098.

    Article  Google Scholar 

  8. Goudarzi V, Shahabi-Ghahfarrokhi I. Photo-producible and photo-degradable starch/TiO2 bionanocomposite as a food packaging material: development and characterization. Int J Biol Macromol. 2018;106:661–9. https://doi.org/10.1016/j.ijbiomac.2017.08.058.

    Article  CAS  PubMed  Google Scholar 

  9. Sonar CR, Al-Ghamdi S, Marti F, Tang J, Sablani SS. Performance evaluation of biobased/biodegradable films for in-package thermal pasteurization. Innov Food Sci Emerg Technol. 2020;66:102485. https://doi.org/10.1016/j.ifset.2020.102485.

    Article  CAS  Google Scholar 

  10. Stoica M, Marian Antohi V, Laura Zlati M, Stoica D. The financial impact of replacing plastic packaging by biodegradable biopolymers—a smart solution for the food industry. J Clean Prod. 2020;277:124013. https://doi.org/10.1016/j.jclepro.2020.124013.

    Article  Google Scholar 

  11. Musso YS, Salgado PR, Mauri AN. Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocoll. 2019;89:674–81. https://doi.org/10.1016/j.foodhyd.2018.11.036.

    Article  CAS  Google Scholar 

  12. Ross G, Ross S, Tighe BJ. Bioplastics. Brydson’s Plast Mater. 2017. https://doi.org/10.1016/B978-0-323-35824-8.00023-2.

    Article  Google Scholar 

  13. Henning FG, Ito VC, Demiate IM, Lacerda LG. Non-conventional starches for biodegradable films: a review focussing on characterisation and recent applications in food packaging. Carbohydrate Polymer Technologies and Applications. 2022;4:100157. https://doi.org/10.1016/j.carpta.2021.100157.

    Article  CAS  Google Scholar 

  14. Zoungranan Y, Lynda E, Dobi-Brice KK, Tchirioua E, Bakary C, Yannick DD. Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. J Environ Chem Eng. 2020;8:104396. https://doi.org/10.1016/j.jece.2020.104396.

    Article  CAS  Google Scholar 

  15. Tapia-Blácido DR, da Silva Ferreira ME, Aguilar GJ, Lemos Costa DJ. Biodegradable packaging antimicrobial activity. Process Dev Polysacch-Based Biopolym Pack Appl. 2020. https://doi.org/10.1016/B978-0-12-818795-1.00009-5.

    Article  Google Scholar 

  16. Gharanjig H, Gharanjig K, Hosseinnezhad M, Jafari SM. Differential scanning calorimetry (DSC) of nanoencapsulated food ingredients. Charact Nanoencapsulated Food Ingredients. 2020. https://doi.org/10.1016/B978-0-12-815667-4.00010-9.

    Article  Google Scholar 

  17. Jafarzadeh S, Jafari SM. Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Crit Rev Food Sci Nutr. 2021;61:2640–58. https://doi.org/10.1080/10408398.2020.1783200.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Yu J, Copeland L, Wang S, Wang S. Gelatinization behavior of starch: reflecting beyond the endotherm measured by differential scanning calorimetry. Food Chem. 2019;284:53–9. https://doi.org/10.1016/j.foodchem.2019.01.095.

    Article  CAS  PubMed  Google Scholar 

  19. Azzi A, Battini D, Persona A, Sgarbossa F. Packaging design: general framework and research agenda. Packag Technol Sci. 2012;25:435–56. https://doi.org/10.1002/pts.993.

    Article  Google Scholar 

  20. Schifferstein HNJ, de Boer A, Lemke M. Conveying information through food packaging: a literature review comparing legislation with consumer perception. J Funct Foods. 2021;86:104734. https://doi.org/10.1016/j.jff.2021.104734.

    Article  Google Scholar 

  21. Bajpai P (2019) Recent trends in packaging of food products. Biobased Polymers. Elsevier. p. 139–69.

  22. Kedzierski M, Frère D, Le Maguer G, Bruzaud S. Why is there plastic packaging in the natural environment? Understanding the roots of our individual plastic waste management behaviours. Sci Total Environ. 2020;740:139985. https://doi.org/10.1016/j.scitotenv.2020.139985.

    Article  CAS  PubMed  Google Scholar 

  23. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017. https://doi.org/10.1126/sciadv.1700782.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Makhijani K, Kumar R, Sharma SK. Biodegradability of blended polymers: a comparison of various properties. Crit Rev Environ Sci Technol. 2015;45:1801–25. https://doi.org/10.1080/10643389.2014.970682.

    Article  CAS  Google Scholar 

  25. Bhargava N, Sharanagat VS, Mor RS, Kumar K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: a review. Trends Food Sci Technol. 2020;105:385–401. https://doi.org/10.1016/j.tifs.2020.09.015.

    Article  CAS  Google Scholar 

  26. Rai P, Mehrotra S, Priya S, Gnansounou E, Sharma SK. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour Technol. 2021;325:124739. https://doi.org/10.1016/j.biortech.2021.124739.

    Article  CAS  PubMed  Google Scholar 

  27. Lopez C, Cheng K, Perez J. Thermotropic phase behavior of milk sphingomyelin and role of cholesterol in the formation of the liquid ordered phase examined using SR-XRD and DSC. Chem Phys Lipids. 2018;215:46–55. https://doi.org/10.1016/j.chemphyslip.2018.07.008.

    Article  CAS  PubMed  Google Scholar 

  28. Kodal M, Karakaya N, Wis AA, Ozkoc G. Thermal properties (DSC, TMA, TGA, DTA) of rubber nanocomposites containing carbon nanofillers. Carb-Based Nanofillers Rubber Nanocompos. 2019. https://doi.org/10.1016/B978-0-12-817342-8.00011-1.

    Article  Google Scholar 

  29. Font R. Decomposition of organic wastes: thermal analysis and evolution of volatiles. Handb Therm Anal Calorim. 2018. https://doi.org/10.1016/B978-0-444-64062-8.00001-2.

    Article  Google Scholar 

  30. Farhan A, Hani NM. Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocoll. 2017;64:48–58. https://doi.org/10.1016/j.foodhyd.2016.10.034.

    Article  CAS  Google Scholar 

  31. Clas S-D, Dalton CR, Hancock BC. Differential scanning calorimetry: applications in drug development. Pharm Sci Technol Today. 1999;2:311–20. https://doi.org/10.1016/S1461-5347(99)00181-9.

    Article  CAS  PubMed  Google Scholar 

  32. Saikia P. Physical and thermal analysis of polymer. Polym Sci Innov Appl. 2020. https://doi.org/10.1016/B978-0-12-816808-0.00005-6.

    Article  Google Scholar 

  33. Loganathan S, Valapa RB, Mishra RK, Pugazhenthi G, Thomas S. Thermogravimetric analysis for characterization of nanomaterials. Therm Rheol meas Tech Nanomater Charact. 2017. https://doi.org/10.1016/B978-0-323-46139-9.00004-9.

    Article  Google Scholar 

  34. Kuprianov VI, Arromdee P. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study. Bioresour Technol. 2013;140:199–210. https://doi.org/10.1016/j.biortech.2013.04.086.

    Article  CAS  PubMed  Google Scholar 

  35. Haykiri-Acma H, Yaman S, Kucukbayrak S. Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Process Technol. 2010;91:759–64. https://doi.org/10.1016/j.fuproc.2010.02.009.

    Article  CAS  Google Scholar 

  36. Mansa R, Zou S. Thermogravimetric analysis of microplastics: a mini review. Environmental Advances. 2021;5:100117. https://doi.org/10.1016/j.envadv.2021.100117.

    Article  CAS  Google Scholar 

  37. Yadav A, Kumar N, Upadhyay A, Pratibha RK, Anurag RK. Edible packaging from fruit processing waste a comprehensive review. Food Rev Int. 2023;39:2075–106. https://doi.org/10.1080/87559129.2021.1940198.

    Article  CAS  Google Scholar 

  38. Basiak E, Lenart A, Debeaufort F. Effect of starch type on the physico-chemical properties of edible films. Int J Biol Macromol. 2017;98:348–56. https://doi.org/10.1016/j.ijbiomac.2017.01.122.

    Article  CAS  PubMed  Google Scholar 

  39. Azira T, Amin I. (2016) Advances in differential scanning calorimetry for food authenticity testing. Advances in Food Authenticity Testing. https://doi.org/10.1016/B978-0-08-100220-9.00012-6

  40. Drzeżdżon J, Jacewicz D, Sielicka A, Chmurzyński L. Characterization of polymers based on differential scanning calorimetry based techniques. TrAC, Trends Anal Chem. 2019;110:51–6. https://doi.org/10.1016/j.trac.2018.10.037.

    Article  CAS  Google Scholar 

  41. Slobozeanu AE, Bejan SE, Tudor IA, Mocioiu A-M, Motoc AM, Romero-Sanchez MD, et al. A review on differential scanning calorimetry as a tool for thermal assessment of nanostructured coatings. Manuf Rev (Les Ulis). 2021;8:1. https://doi.org/10.1051/mfreview/2020038.

    Article  CAS  Google Scholar 

  42. Müller AJ, Michell RM. Differential scanning calorimetry of polymers. Polym Morphol. 2016. https://doi.org/10.1002/9781118892756.ch5.

    Article  Google Scholar 

  43. Fonseca-García A, Jiménez-Regalado EJ, Aguirre-Loredo RY. Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers. Carbohydr Polym. 2021;251:117009. https://doi.org/10.1016/j.carbpol.2020.117009.

    Article  CAS  PubMed  Google Scholar 

  44. Hosseini SN, Pirsa S, Farzi J. Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polym Test. 2021;97:107182. https://doi.org/10.1016/j.polymertesting.2021.107182.

    Article  CAS  Google Scholar 

  45. Zou Y, Yuan C, Cui B, Liu P, Wu Z, Zhao H. Formation of high amylose corn starch/konjac glucomannan composite film with improved mechanical and barrier properties. Carbohydr Polym. 2021;251:117039. https://doi.org/10.1016/j.carbpol.2020.117039.

    Article  CAS  PubMed  Google Scholar 

  46. Costa JCM, Miki KSL, Ramos AS, Teixeira-Costa BE. Development of biodegradable films based on purple yam starch_chitosan for food application. Heliyon. 2020;6:e03718. https://doi.org/10.1016/j.heliyon.2020.e03718.

    Article  Google Scholar 

  47. Barizão CL, Crepaldi MI, Oscar Oliveira S, Oliveira AC, Martins AF, Garcia PS, Bonafé EG. Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. Int J Biol Macromol. 2020;165:582–90. https://doi.org/10.1016/j.ijbiomac.2020.09.150.

    Article  CAS  Google Scholar 

  48. Lopes IA, Paixao LC, da Silva LJ, Rocha AA, Barros Filho AK, Santana AA. Elaboration and characterization of biopolymer films with alginate and babassu coconut mesocarp. Carbohydr polym. 2020;234:115747. https://doi.org/10.1016/j.carbpol.2019.115747.

    Article  CAS  Google Scholar 

  49. Nordin N, Othman SH, Rashid SA, Basha RK. Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocoll. 2020;106:105884. https://doi.org/10.1016/j.foodhyd.2020.105884.

    Article  CAS  Google Scholar 

  50. Riaz A, Lagnika C, Luo H, Dai Z, Nie M, Hashim MM, et al. Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. Int J Biol Macromol. 2020;150:595–604. https://doi.org/10.1016/j.ijbiomac.2020.02.078.

    Article  CAS  PubMed  Google Scholar 

  51. **e Y, Niu X, Yang J, Fan R, Shi J, Ullah N, et al. Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int J Biol Macromol. 2020;150:480–91. https://doi.org/10.1016/j.ijbiomac.2020.01.291.

    Article  CAS  PubMed  Google Scholar 

  52. Wang R, Li X, Ren Z, **e S, Wu Y, Chen W, Ma F, Liu X. Characterization and antibacterial properties of biodegradable films based on CMC, mucilage from Dioscorea opposita Thunb. and Ag nanoparticles. Int J Biol Macromol. 2020;163:2189–98. https://doi.org/10.1016/j.ijbiomac.2020.09.115.

    Article  CAS  PubMed  Google Scholar 

  53. Batista JTS, Araújo CS, Peixoto Joele MRS, Silva JOC, Lourenço LFH. Study of the effect of the chitosan use on the properties of biodegradable films of myofibrillar proteins of fish residues using response surface methodology. Food Packag Shelf Life. 2019;20:100306. https://doi.org/10.1016/j.fpsl.2019.100306.

    Article  Google Scholar 

  54. Oliveira NL, Rodrigues AA, Oliveira Neves IC, Teixeira Lago AM, Borges SV, de Resende JV. Development and characterization of biodegradable films based on Pereskia aculeata Miller mucilage. Ind Crops Prod. 2019;130:499–510. https://doi.org/10.1016/j.indcrop.2019.01.014.

    Article  CAS  Google Scholar 

  55. Oluwasina OO, Olaleye FK, Olusegun SJ, Oluwasina OO, Mohallem NDS. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. Int J Biol Macromol. 2019;135:282–93. https://doi.org/10.1016/j.ijbiomac.2019.05.150.

    Article  CAS  PubMed  Google Scholar 

  56. Wang Z, Tian H, Wang X, Yu J, Jia S, Han L, et al. Study on thermal, rheological, mechanical, morphological, and barrier properties of poly(butylene adipate-co-terephthalate)/thermoplastic starch/poly(propylene carbonate) biodegradable blown films. J Therm Anal Calorim. 2023;148:1853–65. https://doi.org/10.1007/s10973-022-11858-8.

    Article  CAS  Google Scholar 

  57. Wang Z, Zhao L, ** B, Jia S, Han L, Pan H, et al. Effect of maleic anhydride and titanate coupling agent as additives on the properties of poly (butylene adipate-co-terephthalate)/thermoplastic starch films. Polym Bull. 2022;79:7193–213. https://doi.org/10.1007/s00289-021-03841-4.

    Article  CAS  Google Scholar 

  58. Guadagno L, Raimondo M, Catauro M, Sorrentino A, Calabrese E. Design of self-healing biodegradable polymers. J Therm Anal Calorim. 2022;147:5463–72. https://doi.org/10.1007/s10973-022-11202-0.

    Article  CAS  Google Scholar 

  59. Palai B, Biswal M, Mohanty S, Nayak SK. In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind Crops Prod. 2019;141:111748. https://doi.org/10.1016/j.indcrop.2019.111748.

    Article  CAS  Google Scholar 

  60. Quispe MM, Lopez OV, Boina DA, Stumbé J-F, Villar MA. Glycerol-based additives of poly(3-hydroxybutyrate) films. Polym Test. 2021;93:107005. https://doi.org/10.1016/j.polymertesting.2020.107005.

    Article  CAS  Google Scholar 

  61. Aziman N, Kian LK, Jawaid M, Sanny M, Alamery S. Morphological, structural, thermal, permeability, and antimicrobial activity of PBS and PBS/TPS films incorporated with biomaster-silver for food packaging application. Polymers (Basel). 2021;13:391. https://doi.org/10.3390/polym13030391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shankar S, Reddy JP, Rhim J-W, Kim H-Y. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr Polym. 2015;117:468–75. https://doi.org/10.1016/j.carbpol.2014.10.010.

    Article  CAS  PubMed  Google Scholar 

  63. da Costa JC, Miki KS, da Silva Ramos A, Teixeira-Costa BE. Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon. 2020;6(4):e03718. https://doi.org/10.1016/j.heliyon.2020.e03718.

    Article  Google Scholar 

  64. de Lima Barizão C, Crepaldi MI, Oscar de Oliveira S, de Oliveira AC, Martins AF, Garcia PS, Bonafé EG. Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. Int J Biol Macromol. 2020;165:582–90. https://doi.org/10.1016/j.ijbiomac.2020.09.150.

    Article  CAS  Google Scholar 

  65. Wang K, Gao S, Shen C, Liu J, Li S, Chen J, et al. Preparation of cationic Konjac glucomannan in NaOH urea aqueous solution. Carbohydr Polym. 2018;181:736–43. https://doi.org/10.1016/j.carbpol.2017.11.084.

    Article  CAS  PubMed  Google Scholar 

  66. Soccio M, Dominici F, Quattrosoldi S, Luzi F, Munari A, Torre L, et al. PBS-Based Green Copolymer as an Efficient Compatibilizer in Thermoplastic Inedible Wheat Flour/Poly(butylene succinate) Blends. Biomacromol. 2020;21:3254–69. https://doi.org/10.1021/acs.biomac.0c00701.

    Article  CAS  Google Scholar 

  67. Bahari K, Mitomo H, Enjoji T, Yoshii F, Makuuchi K. Radiation crosslinked poly(butylene succinate) foam and its biodegradation. Polym Degrad Stab. 1998;62:551–7. https://doi.org/10.1016/S0141-3910(98)00041-X.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Brazil’s National Council for Scientific and Technological Development (CNPq), through Grant number 141436/2020-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Cristina Ferreira Bonomo.

Ethics declarations

Conflict of interest

The authors declare that they have no known financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, R.F., Bonomo, R.C.F. Thermal analysis for evaluation of biodegradable films: a review. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13339-6

Keywords

Navigation