Log in

Phase transition and solubility of levofloxacin crystal forms: anhydrates versus hydrates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Levofloxacin (LF), a pure levo-isomer of ofloxacin, is a quinolone-class antibiotic marketed in its hemihydrate (LF-½H) crystal form. Another LF hydrate is known as monohydrate (LF-1H), and LF-½H and LF-1H dehydration results in a pair of anhydrous polymorphs: LF-γ (from LF-½H) and LF-α (from LF-1H). Herein, a pure crystalline material of each of these four LF crystal forms has been successfully produced and systematically characterized by X-ray powder diffraction (PXRD), infrared attenuated total reflectance spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analyses. Coupling cyclic DSC and ex-situ PXRD analyses allowed probing dehydration, melting, crystallization and polymorphic phase transitions involving LF-½H, LF-1H, LF-α, LF-γ, and LF-δ (an enantiotropic polymorph of LF-γ). Furthermore, for the first time, the LF-½H, LF-1H, LF-γ and LF-α equilibrium solubilities were individually measured in five different aqueous media (pH from 1.0 to 7.2). The general solubility order is: LF-γ > LF-½H = LF-α > LF-1H. The crystal phases identified in the residual solid materials separated from equilibrium solutions show that LF-½H and LF-α forms in converted to LF-1H. The information provided herein about stability and solubility of known LF crystal forms proved to be essential to control the hydration/dehydration/rehydration process between the LF crystalline phases and ensure safe drugs with low toxicity or design LF solids with properties improved physical chemistry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Surov AO, Vasilev NA, Churakov AV, Parashchuk OD, Artobolevskii SV, Alatortsev OA, et al. Two faces of water in the formation and stabilization of multicomponent crystals of zwitterionic drug-like compounds. Symmetry (Basel). 2021;425:14.

    Google Scholar 

  2. Basford PA, Back KR, Cram M, Docherty R, Davey RJ, Cruz-Cabeza AJ. Impact of crystal structure and molecular conformation on the hydration kinetics of fluconazole. Cryst Growth Des. 2019;19:7193–205.

    Article  CAS  Google Scholar 

  3. Chow K, Tong HHY, Lum S, Chow AHL. Engineering of pharmaceutical materials: an industrial perspective. J Pharm Sci. 2008;97:2855–77.

    Article  CAS  PubMed  Google Scholar 

  4. Stahly GP. Diversity in single and multiple-component crystals the search for and prevalence of polymorphs and cocrystals. Cryst Growth Des. 2007;7:1007–26.

    Article  CAS  Google Scholar 

  5. Jurczak E, Mazurek AH, Szeleszczuk Ł, Pisklak DM, Zielińska-Pisklak M. Pharmaceutical hydrates analysis—overview of methods and recent advances. Pharmaceutics. 2020;12(10):959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma X, Müller F, Huang S, Michael Lowinger X, Liu RS, Williams RO. Influence of carbamazepine dihydrate on the preparation of amorphous solid dispersions by hot melt extrusion. Pharmaceutics. 2020;12(4):379. https://doi.org/10.3390/pharmaceutics12040379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Griesser UJ. In polymorphism. KGaA: Wiley-VCH Verlag GmbH & Co; 2006.

    Google Scholar 

  8. Braun DE, Griesser UJ. Stoichiometric and nonstoichiometric hydrates of brucine. Cryst Growth Des. 2016;16:6111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cavallari C, Fini A, Santos B. Thermal study of anhydrous and hydrated forms of olanzapine. Pharm Anal Acta. 2013;4(5):237–44.

    Article  Google Scholar 

  10. Khankari RK, Grant DJW. Pharmaceutical hydrates. Thermochim Acta. 1995;248:61–79.

    Article  CAS  Google Scholar 

  11. Roy S, Quiñones R, Matzger AJ. Structural and physicochemical aspects of dasatinib hydrate and anhydrate phases. Cryst Growth Des. 2012;12:2122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gift AD, Luner PE, Luedeman L, Taylor LS. Influence of polymeric excipients on crystal hydrate formation kinetics in aqueous slurries. J Pharm Sci. 2008;97:5198–211.

    Article  CAS  PubMed  Google Scholar 

  13. Vippagunta SR, Brittain HG, Grant DJW. Crystalline solids. Adv Drug Deliv Rev. 2001. https://doi.org/10.1016/S0169-409X(01)00097-7.

    Article  PubMed  Google Scholar 

  14. Grothe E, Meekes H, Vlieg E, Ter Horst JH, De Gelder R. Solvates, salts, and cocrystals: a proposal for a feasible classification system. Cryst Growth Des. 2016;16:3237–43.

    Article  CAS  Google Scholar 

  15. Cruz-Cabeza AJ, Bernstein J. Conformational polymorphism. Chem Rev. 2014;114:2170–91.

    Article  CAS  PubMed  Google Scholar 

  16. Cruz-Cabeza AJ, Reutzel-Edens SM, Bernstein J. Facts and fictions about polymorphism. Chem Soc Rev. 2015;44(23):8619–35. https://doi.org/10.1039/C5CS00227C.

    Article  CAS  PubMed  Google Scholar 

  17. Borghetti GS, Carini JP, Honorato SB, Ayala AP, Moreira JCF, Bassani VL. Physicochemical properties and thermal stability of quercetin hydrates in the solid state. Thermochim Acta. 2012;539:109–14.

    Article  CAS  Google Scholar 

  18. Giron D, Goldbronn C, Mutz M, Pfeffer S, Schwab P. Solid state characterizations of pharmaceutical hydrates. J Therm Anal Calorim. 2002;68:453–65.

    Article  CAS  Google Scholar 

  19. Vardanyan R, Hruby V. Antibacterial drugs. In: Synthesis of best-seller drugs. Elsevier; 2016. p. 645–67. https://doi.org/10.1016/B978-0-12-411492-0.00031-6.

    Chapter  Google Scholar 

  20. Kitaoka H, Wada C, Moroi R, Hakusui H. Effect of dehydration om the formation of levofloxacin pseudopolymorphs. Chem Pharm Bull. 1995;43:649–53.

    Article  CAS  Google Scholar 

  21. Gorman EM, Samas B, Munson EJ. Understanding the dehydration of levofloxacin hemihydrate. J Pharm Sci. 2012;101:3319–30.

    Article  CAS  PubMed  Google Scholar 

  22. Singh SS, Thakur TS. New crystalline salt forms of levofloxacin: Conformational analysis and attempts towards the crystal structure prediction of the anhydrous form. CrystEngComm. 2014;16:4215–30.

    Article  CAS  Google Scholar 

  23. Pereira RN, Fandaruff C, Riekes MK, Monti GA, Maduro CE, de Campos S, Cuffini L, Silva MAS. Grinding effect on levofloxacin hemihydrate. J Therm Anal Calorim. 2015;119(2):989–94. https://doi.org/10.1007/s10973-014-4233-1.

    Article  CAS  Google Scholar 

  24. Freitas JTJ, De Melo CC, Viana OMMS, Ferreira FF, Doriguetto AC. Crystal structure of levofloxacin anhydrates: a high-temperature powder X-ray diffraction study versus crystal structure prediction. Cryst Growth Des. 2018;18:3558–68.

    Article  CAS  Google Scholar 

  25. Thakur TS. Comment on “Polymorphism of levofloxacin: structure, properties and phase transformation”, CrystEngComm, by N. Wei, L. Jia, Z. Shang, J. Gong, S. Wu, J. Wang and W. Tang, 2019, 21, 6196–6207. CrystEngComm. 2020;22(10):1885–8.

    Article  CAS  Google Scholar 

  26. Thakur TS. Reply to the “Comment on ‘polymorphism of levofloxacin: Structure, properties and phase transformation’” by Tejender S. Thakur. CrystEngComm. 2020;22(10):1885–8. https://doi.org/10.1039/C9CE01400D.

    Article  CAS  Google Scholar 

  27. Wei N, Jia L, Shang Z, Gong J, Wu S, Wang J, et al. Polymorphism of levofloxacin: structure, properties and phase transformation. CrystEngComm. 2019;21:6196–207.

    Article  CAS  Google Scholar 

  28. FDA. U.S. Food and Drug Administration. Levaquin® (levofloxacin). Highlights of prescribing information. 2008 [cited 2023 Jun 21]. p. 1–65. Available from: https://www.fda.gov/downloads/drugs/emergencypreparedness/bioterrorismanddrugpreparedness/ucm133684.pdf.

  29. WHO - World Health Organization. Notes on the Design of Bioequivalence Study: Levofloxacin. https://extranet.who.int/pqweb/sites/default/files/documents/BE_levofloxacin_July2021.pdf. 2021.

  30. WHO Prequalification of Medicines Programme - Guidance Document. Biopharmaceutics Classification System (BCS)-based biowaiver applications: anti-tuberculosis medicines. 2009;21.

  31. Koeppe MO, Cristofoletti R, Fernandes EF, Storpirtis S, Junginger HE, Kopp S, Midha KK, Shah VP, Stavchansky S, Dressman JB, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: Levofloxacin. J Pharm Sci. 2011;100(5):1628–36.

    Article  CAS  PubMed  Google Scholar 

  32. Kłosińska-Szmurło E, Grudzień M, Betlejewska-Kielak K, Pluciński F, Biernacka J, Mazurek AP. Physicochemical properties of lomefloxacin, levofloxacin, and moxifloxacin relevant to the biopharmaceutics classification system. Acta Chim Slov. 2014;61:827–34.

    PubMed  Google Scholar 

  33. O’Neil MJ; The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Whitehouse Station, editor. Whitehouse Station, NJ: NJ: Merck and Co., Inc.; 2006.

  34. Frick A, Möller H, Wirbitzki E. Biopharmaceutical characterization of oral immediate release drug products. In vitro/in vivo comparison of phenoxymethylpenicillin potassium, glimepiride and levofloxacin. Eur J Pharm Biopharm. 1998;46(3):305–11.

    Article  CAS  PubMed  Google Scholar 

  35. Brittain HG. Analytical profile of drug substances and excipients. Academic press, editor. California; 1994.

  36. Singh BK, Parwate DV, Shukla SK. Rapid color test identification system for screening of counterfeit fluoroquinolone. E-J Chem. 2009;6:377–84.

    Article  CAS  Google Scholar 

  37. Ahmad I, Bano R, Sheraz MA, Ahmed S, Mirza T, Ansari SA. Photodegradation of levofloxacin in aqueous and organic solvents: a kinetic study. Acta Pharm Short Commun. 2013;63:223–9.

    Article  CAS  Google Scholar 

  38. UNITED STATES PHARMACOPEIA. National Formulary USP40- NF35. Levofloxacin. USP40-NF35 40ed. ed. Rockville: United States Pharmacopeial Convention; 2017.

  39. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA. Mercury CSD 2.0 new features for the visualization and investigation of crystal structures. J Appl Crystal. 2008;41(2):466–70. https://doi.org/10.1107/S0021889807067908.

    Article  CAS  Google Scholar 

  40. Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The cambridge structural database. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016;72:171–9.

    Article  CAS  PubMed  Google Scholar 

  41. Kugel A, Chisholm B, Ebert S, Jepperson M, Jarabek L, Stafslien S. Antimicrobial polysiloxane polymers and coatings containing pendant levofloxacin. Polym Chem. 2010;1:442–52.

    Article  CAS  Google Scholar 

  42. Sagdinc S, Bayari S. Theoretical study of ofloxacin: geometrical parameters and vibrational wavenumbers. J Mol Struct (Theochem). 2004;668:93–9.

    Article  CAS  Google Scholar 

  43. Zupančič M, Turel I, Bukovec P, White AJ, Williams DJ. 2001 Synthesis and Characterization of Two Novel Zinc (II) Complexes with Ciprofloxacin. Crystal Structure of [C 17 H 19 N 3 O 3 F] 2⋅[ZnCl 4]⋅ 2H 2 O. Croatica Chemica Acta. 74(1):61-74.

  44. Sahoo S, Kanti Chakraborti C, Mishra C, Nanda N, Naik S. FTIR and XRD investigations of some fluoroquinolones. Int J Pharm Pharm Sci. 2011;3:165–70.

    CAS  Google Scholar 

  45. Drugbank. Levofloxacin DB01137 (APRD00477, DB06085) and Levofloxacin hemihydrate DBSALT001001. https://www.drugbank.ca. 2020.

  46. Michot JM, Seral C, Van Bambeke F, Mingeot-Leclercq MP, Tulkens PM. Influence of efflux transporters on the accumulation and efflux of four quinolones (ciprofloxacin, levofloxacin, garenoxacin, and moxifloxacin) in J774 macrophages. Antimicrob Agents Chemother. 2005;49:2429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiménez-Lozano E, Marqués I, Barrón D, Beltrán JL, Barbosa J. Determination of pKa values of quinolones from mobility and spectroscopic data obtained by capillary electrophoresis and a diode array detector. Anal Chim Acta. 2002;464(1):37–45.

    Article  Google Scholar 

  48. Montero MT, Saiz D, Sitges R, Vázquez JL, Hernández BJ. Influence of physicochemical properties of fluoroquinolones on encapsulation efficiency in liposomes. Int JPharm. 1996;138:113–20.

    Article  CAS  Google Scholar 

  49. Lee D-S, Han H-J, Kim K, Park W-B, Cho J-K, Kim J-H. Dissociation and complexation of fluoroquinolone analogues. J Pharm Biomed Anal. 1994;12:157–64.

    Article  CAS  PubMed  Google Scholar 

  50. Takács-Novák K, Noszál B, Hermecz I, Keresztúri G, Podányi B, Szasz G. Protonation equilibria of quinolone antibacterials. J Pharm Sci. 1990;79(11):1023–8.

    Article  PubMed  Google Scholar 

  51. Herbstein FH. Crystalline Molecular Complexes and Compounds: Structures and Principles. Oxford University Press. 2005;

  52. Santos OM, Freitas JT, Cazedey EC, Araújo MB, Doriguetto AC. Structure, solubility and stability of orbifloxacin crystal forms: Hemihydrate versus anhydrate. Molecules. 2016;21(3):328.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Freitas JTJ, Viana OMMS, Bonfilio R, Ruela ALM, Trevisan MG, Araújo MB. Using thermal analysis as quality control for famotidine polymorph contamination. J Therm Anal Calorim. 2022;147:13405–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received financial support and fellowships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (308893/2019-0 and 312433/2023-9), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) (APQ-01835-18, RED-00116-23, APQ-00544-23 and APQ-05218-23), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (post-doctoral (C.C.M.) and post-graduate (J.T.J.F. and M.B.) grants – Finance Code 001), and PRPPG-UNIFAL-MG (RI grant). We also thanks the facilities for X-ray diffraction, thermal and spectroscopic analysis at UNIFAL-MG.

Author information

Authors and Affiliations

Authors

Contributions

Jennifer T. J. Freitas involved in conceptualization, methodology, synthesis, characterization, and writing – original draft, review and editing; Olimpia M. M. S. Viana involved in equilibrium solubility assays and writing – original draft; Cristiane C. de Melo involved in supervision, writing – original draft and review; Monalisa Bitencourt involved in HPLC quantification assays and writing – original draft; Magali B. de Araújo involved in supervision and funding acquisition; Antônio Carlos Doriguetto involved in preparation of the published work, project administration, supervision, formal analysis and funding acquisition.

Corresponding author

Correspondence to Antonio C. Doriguetto.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1586 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, J.T.J., Viana, O.M.M.S., de Melo, C.C. et al. Phase transition and solubility of levofloxacin crystal forms: anhydrates versus hydrates. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13252-y

Keywords

Navigation