Log in

Computational analysis of multi-fuel micro-gas turbine annular combustion chamber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

This article has been updated

Abstract

In this research, an annular combustion chamber with swirlers is introduced in a micro-gas turbine engine for power production. The impact of the dilution holes position and swirler vane angles on the performance of the combustion chamber is investigated. Furthermore, optimization of the combustion chamber is carried out to accommodate a multi-fuel blend, incorporating pure methane, natural gas, and ethanol. The combustor is designed in SolidWorks, and simulations are performed in Ansys Fluent for two positions of dilution holes in the liner and swirler blade angles. The model used is non-premixed with a compressible kε turbulent flow model and an equilibrium probability density function for the chemical reaction. To measure the performance of the combustion chamber, pollutant emissions, combustion efficiency, and outlet temperature are examined. Pollutant emissions such as carbon monoxide and unburned fuels exist in a small amount; however, nitric oxides are negligible. The combustion efficiency found is above 98% for methane and natural gas, and almost 100% for ethanol. Moreover, simulation results reveal that the swirler vane angle of 45° widely improves combustor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

  • 06 March 2024

    The incorrect article note in the original version of this article has been removed.

References

  1. Nascimento MA, Rodrigues LO, Santos ED, Gomes EE, Dias FL, et al. Micro gas turbine engine: a review. Prog Gas Turbine Perform. 2013;125:1–14. https://doi.org/10.5772/54444.

    Article  Google Scholar 

  2. Enagi II, Al-attab KA, Zainal ZA. Combustion chamber design and performance for micro gas turbine application. Fuel Process Technol. 2017;166:258–68. https://doi.org/10.1016/j.fuproc.2017.05.037.

    Article  CAS  Google Scholar 

  3. Boukhanouf R. Small combined heat and power (CHP) systems for commercial buildings and institutions. In: Small and micro combined heat and power (CHP) systems. Woodhead Publishing; 2011. p. 365–94.

    Chapter  Google Scholar 

  4. Li C, Yang D, Li S, Zhu M. An analytical study of the effect of flame response to simultaneous axial and transverse perturbations on azimuthal thermoacoustic modes in annular combustors. Proc Combust Inst. 2019;37:5279–87. https://doi.org/10.1016/J.PROCI.2018.05.121.

    Article  CAS  Google Scholar 

  5. Boyce MP. Advanced industrial gas turbines for power generation. In: Combined cycle systems for near-zero emission power generation. Woodhead Publishing; 2012. p. 44–102.

    Chapter  Google Scholar 

  6. Ayon AA, Waitz IA, Schmidt MA, et al. A six-wafer combustion system for a silicon micro gas turbine engine. J Microelectromech Syst. 2002;9:517–27. https://doi.org/10.1109/84.896774.

    Article  Google Scholar 

  7. Shih HY, Liu CR. A computational study on the combustion of hydrogen/methane blended fuels for a micro gas turbines. Int J Hydrog Energy. 2014;39:15103–15. https://doi.org/10.1016/j.ijhydene.2014.07.046.

    Article  CAS  Google Scholar 

  8. Asgari B, Amani E. A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors. Appl Energy. 2017;203:696–710. https://doi.org/10.1016/j.apenergy.2017.06.080.

    Article  Google Scholar 

  9. Abagnale C, Cameretti MC, De Robbio R, Tuccillo R. CFD study of a MGT combustor supplied with syngas. In: Energy procedia. Elsevier; 2016.

    Google Scholar 

  10. Farokhipour A, Hamidpour E, Amani E. A numerical study of NOx reduction by water spray injection in gas turbine combustion chambers. Fuel. 2018;212:173–86. https://doi.org/10.1016/j.fuel.2017.10.033.

    Article  CAS  Google Scholar 

  11. Razmjooei B, Ravangard AR, Momayez L, Ferchichi M. The influence of heat transfer due to radiation heat transfer from a combustion chamber. J Therm Anal Calorim. 2022;147:1901–17. https://doi.org/10.1007/s10973-020-10263-3.

    Article  CAS  Google Scholar 

  12. Ilbas M, Yılmaz İ, Veziroglu TN, Kaplan Y. Hydrogen as burner fuel: modelling of hydrogen–hydrocarbon composite fuel combustion and NOx formation in a small burner. Int J Energy Res. 2005;29:973–90. https://doi.org/10.1002/er.1104.

    Article  CAS  Google Scholar 

  13. Jeong D, Huh KY. Numerical simulation of non-reacting and reacting flows in a 5MW commercial gas turbine combustor, pp. 739–748 (2009).

  14. Ghose P, Patra J, Datta A, Mukhopadhyay A. Effect of air flow distribution on soot formation and radiative heat transfer in a model liquid fuel spray combustor firing kerosene. Int J Heat Mass Transf. 2014;74:143–55. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.03.001.

    Article  CAS  Google Scholar 

  15. Jarpala R, Aditya Burle NVS, Voleti M, Sadanandan R. Effect of swirl on the flame dynamics and pollutant emissions in an ultra-lean non-premixed model gas turbine burner. Combust Sci Technol. 2017;189:1832–48. https://doi.org/10.1080/00102202.2017.1333500.

    Article  CAS  Google Scholar 

  16. Pourhoseini SH, Fakhri S, Taheri E, et al. An investigation on the effect of air swirler vane angle on liquid fuel combustion characteristics. Heat Transf Res. 2017;46:750–60. https://doi.org/10.1002/htj.21241.

    Article  Google Scholar 

  17. Cameretti MC, Reale F, Tuccillo R. Cycle optimization and combustion analysis in a low-NOx micro-gas turbine. J Eng Gas Turbines Power. 2006;129:994–1003. https://doi.org/10.1115/1.2718232.

    Article  CAS  Google Scholar 

  18. Cameretti MC, Tuccillo R, Piazzesi R. Study of an exhaust gas recirculation equipped micro gas turbine supplied with bio-fuels. Appl Therm Eng. 2013;59:162–73. https://doi.org/10.1016/J.APPLTHERMALENG.2013.04.029.

    Article  CAS  Google Scholar 

  19. Cameretti MC, Tuccillo R, Piazzesi R. Fuelling an EGR equipped micro gas turbine with bio-fuels, pp. 629–640 (2012).

  20. Cameretti MC, Piazzesi R, Reale F, Tuccillo R. Comparison of external and ınternal EGR concepts for low emission micro gas turbines, pp. 581–593 (2010).

  21. Cameretti MC, Piazzesi R, Reale F, Tuccillo R. Combustion simulation of an exhaust gas recirculation operated micro-gas turbine. J Eng Gas Turbines Power. 2009. https://doi.org/10.1115/1.3078193.

    Article  Google Scholar 

  22. Frenillot JP, Cabot G, Cazalens M, et al. Impact of H2 addition on flame stability and pollutant emissions for an atmospheric kerosene/air swirled flame of laboratory scaled gas turbine. Int J Hydrog Energy. 2009;34:3930–44. https://doi.org/10.1016/J.IJHYDENE.2009.02.059.

    Article  CAS  Google Scholar 

  23. Danon B, De Jong W, Roekaerts DJEM. Experimental and numerical investigation of a FLOX combustor firing low calorific value gases. Combust Sci Technol. 2010;182:1261–78. https://doi.org/10.1080/00102201003639284.

    Article  CAS  Google Scholar 

  24. Zehra H, Ramkumar P. Performance and emission characteristics of biofuel in a small-scale gas turbine engine. Appl Energy. 2010;87:1701–9.

    Article  Google Scholar 

  25. Glaude PA, Fournet R, Bounaceur R. Adiabatic flame temperature from biofuels and fossil fuels and derived effect on NOx emissions. Fuel Process Technol. 2010;91:229–35.

    Article  CAS  Google Scholar 

  26. De Pascale A, Fussi M, Peretto A. Numerical simulation of biomass derived syngas combustion in a swirl flame combustor. ASME Pap GT2010-22791 (2010).

  27. Cadorin M, Pinelli M, Vaccari A, Calabria R, Chiariello F, Massoli P, Bianchi E. Analysis of a micro gas turbine fed by natural gas and synthesis gas: MGT test bench and combustor CFD analysis. ASME J Eng Gas Turbines Power. 2012;134:071401.

    Article  Google Scholar 

  28. Escudero M, Jiménez Á, González C, Nieto R, López I. Analysis of the behaviour of biofuel-fired gas turbine power plant. Therm Sci. 2012;16(3):849–64.

    Article  Google Scholar 

  29. Ahmed EE, Vaibhav K, Arghode R, Gupta AK. Low calorific value fuelled distributed combustion with swirl for gas turbine applications. Appl Energy. 2012;89:69–78.

    Google Scholar 

  30. Kodate SV, Yadav AK, Kumar GN. Combustion, performance and emission analysis of preheated KOME biodiesel as an alternate fuel for a diesel engine. J Therm Anal Calorim. 2020;141:2335–45. https://doi.org/10.1007/s10973-020-09814-5.

    Article  CAS  Google Scholar 

  31. Tibaquirá EJ, Huertas IJ, Ospina S, et al. The effect of using ethanol-gasoline blends on the mechanical, energy and environmental performance of ın-use vehicles. Energies. 2018;11:221.

    Article  Google Scholar 

  32. Cooney CP, Worm JJ, Naber JD. Combustion characterization in an internal combustion engine with ethanol− gasoline blended fuels varying compression ratios and ignition timing. Energy Fuels. 2009;23:2319–24.

    Article  CAS  Google Scholar 

  33. Ayad SMME, Belchior CRP, da Silva GLR, et al. Analysis of performance parameters of an ethanol fueled spark ignition engine operating with hydrogen enrichment. Int J Hydrog Energy. 2019;45(8):5588–606.

    Article  Google Scholar 

  34. Luo L, van der Voet E, Huppes G. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sustain Energy Rev. 2009;13:1613–9. https://doi.org/10.1016/j.rser.2008.09.024.

    Article  CAS  Google Scholar 

  35. Renouf MA, Wegener MK, Nielsen LK. An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy. 2008;32:1144–55. https://doi.org/10.1016/j.biombioe.2008.02.012.

    Article  CAS  Google Scholar 

  36. García CA, Fuentes A, Hennecke A, et al. Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Appl Energy. 2011;88:2088–97. https://doi.org/10.1016/j.apenergy.2010.12.072.

    Article  CAS  Google Scholar 

  37. Kadam KL. Environmental benefits on a life cycle basis of using bagasse-derived ethanol as a gasoline oxygenate in India. Energy Policy. 2002;30:371–84. https://doi.org/10.1016/S0301-4215(01)00104-5.

    Article  Google Scholar 

  38. Weigand P, Meier W, Duan XR, et al. Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions. Combust Flame. 2006;144:205–24. https://doi.org/10.1016/j.combustflame.2005.07.010.

    Article  CAS  Google Scholar 

  39. Lefebvre AH, Ballal DR. Gas turbine combustion: alternative fuels and emissions. Boca Raton: Taylor and Francis Group, LLC; 2010.

    Book  Google Scholar 

  40. Fantozzi F, Laranci P, Bianchi M, et al. CFD simulation of a microturbine annular combustion chamber fuelled with methane and biomass pyrolysis syngas: preliminary results, pp. 811–822 (2009).

  41. Zhang RC, Fan WJ, Shi Q, Tan WL. Combustion and emissions characteristics of dual-channel double-vortex combustion for gas turbine engines. Appl Energy. 2014;130:314–25. https://doi.org/10.1016/j.apenergy.2014.05.059.

    Article  CAS  Google Scholar 

  42. Zhang RC, Hao F, Fan WJ. Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines. Appl Energy. 2018;225:940–54. https://doi.org/10.1016/j.apenergy.2018.05.084.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the US-Pakistan Center for Advanced Studies in Energy, NUST, for providing facilities.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: AAS and NA helped in study conception, design, and data collection. AAS, NA, MS, PP and AL participated in analysis and interpretation of results. AAS, NA, and MS were involved in draft manuscript preparation. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Naseem Ahmad.

Ethics declarations

Conflict of interest

The authors of this paper declare that they have no known personal relationships or competing financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sher, A.A., Ahmad, N., Sattar, M. et al. Computational analysis of multi-fuel micro-gas turbine annular combustion chamber. J Therm Anal Calorim 149, 3317–3329 (2024). https://doi.org/10.1007/s10973-024-12924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12924-z

Keywords

Navigation