Log in

Scrutinization of marangoni convective flow of dusty hybrid nanofluid with gyrotactic microorganisms and thermophoretic particle deposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of the present work is to study the influence of heat source on steady MHD Marangoni convective flow of incompressible hybrid nanofluid with deferment of dust particles over a sheet. The thermophoretic particle deposition, gyrotactic microorganisms, are taken into account along with heat source (temperature and exponential dependent) and mixed convection. The main goal of this study is to determine the thermal mobility of nanoparticles with water base fluid. The elements of \({{{\text{Al}}}_{2}{\text{O}}}_{3}\) and \({\text{Cu}}\) are adept for the thermal analysis. We combined dust with microorganisms in this work to promote the heat and mass transport phenomena. It is vital for improving cooling systems in electronics, enhancing industrial heat transfer, and optimizing microfluidic devices. Additionally, the research aids environmental science by understanding pollutant dispersion and removal. It also finds applications in biomedical research, supporting drug delivery systems and medical diagnostics. Overall, this study promises advancements in technology, environmental conservation, and healthcare. The PDEs, which result from the conservation of concentration, energy, momentum and density of microorganisms in both hybrid nanofluid and dusty phases. Appropriate similarity transformations have been used to obtain the ODEs (ordinary differential equations). The resulting problem is numerically solved by a shooting technique based on the RKF-45th order. The results showed that the velocity profiles of the dust and fluid phases rise as the Marangoni convection parameter increases, but the microorganisms, concentration, and temperature profiles deteriorate in both phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Data availability

No data were used in this paper.

Abbreviations

\(\left(x ,y\right)\) :

Cartesian coordinates

\({\text{Gr}}\) :

Grashof number

\(\left(u ,v\right)\) :

Velocity fields of fluid

\(K=6\pi \mu r\) :

The coefficient of drag stokes

\(\left({u}_{{\text{p}}} ,{v}_{{\text{p}}}\right)\) :

Velocity fields of particle phase

\(r\) :

Radius of the dust particle

\({q}_{{\text{r}}}\) :

Radiative heat flux

\(M\) :

Magnetic parameter

\({Q}_{{\text{e}}}\) :

Exponential dependent heat source.

\({W}_{{\text{c}}}\) :

Maximum cell swimming speed

\(E{\text{c}}\) :

Eckert number

\({\tau }_{{\text{T}}}\) :

Thermal relaxation time

\(\psi \left(x,y\right)\) :

Streams functions of fluid phase

\(\Psi \left(x,y\right)\) :

Streams functions of particle phase

\({\beta }_{{\text{m}}}\) :

Fluid-particle interaction parameter for bio-convection

\({\Phi }_{1}\) :

Volume fraction of \({{{\text{Al}}}_{2}{\text{O}}}_{3}\)

\({\beta }_{{\text{c}}}\) :

Parameter for fluid-particle interaction for concentration

\({\gamma }_{{\text{C}}}\) :

Surface tension coefficients for concentration

\({C}_{{\text{p}}}\) :

Specific heat of the fluid

\(\sigma\) :

Electrical Conductivity

\({K}^{*}\) :

Chemical reaction co-efficient

\({\mu }_{{\text{f}}}\) :

Dynamic viscosity (kg/ms)

\(l\) :

Reference length

\({\text{Pr}}\) :

Prandtl number

\({T}_{\infty }\) :

Fluid ambient temperature

\({\text{Le}}\) :

Lewis number

\({k}_{{\text{f}}}\) :

Thermal conductivity of the fluid

\({B}_{0}\) :

Uniform magnetic field

\(T\) :

Fluid temperature \(({\text{k}})\)

\({N}^{*}\) :

Dimensions of dust particle density

\({K}_{1}\) :

Permeability of the porous medium

\({\text{Pe}}\) :

Bioconvection Peclet number

\({\text{Lb}}\) :

Bio-convection Lewis number

\({q}_{{\text{n}}}\) :

Motile microorganism’s flux

\({T}_{{\text{P}}}\) :

Particle temperature

\(G{\text{n}}\) :

Bioconvection mixed convection parameter

\(G{\text{c}}\) :

Concentration mixed convection parameter,

\({{\text{Nn}}}_{{\text{x}}}\) :

Local density of motile microorganisms

\(\Omega\) :

Microorganisms concentration difference parameter

\({q}_{{\text{w}}}\) :

Heat flux

\({\text{Rd}}\) :

Radiation parameter

\({C}_{{\text{fx}}}\) :

Skin friction

\({M}_{{\text{a}}}\) :

Marangoni ratio parameter

\({k}^{*}\) :

Mean absorption coefficient

\({Q}_{{\text{T}}}\) :

Temperature dependent heat source

\({{\text{Nu}}}_{{\text{x}}}\) :

Nusselt number

\({C}_{{\text{p}}}\) :

Concentration species (particle phase)

\({\rho }_{{\text{P}}}\) :

Particle density

\({\tau }_{{\text{v}}}\) :

Momentum relaxation time

\({\rho }_{{\text{f}}}\) :

Fluid density

\({\beta }_{{\text{v}}}\) :

Fluid-particle interaction parameter

\({\beta }_{{\text{c}}}^{*}\) :

Concentration expansion coefficient

\({\upepsilon }_{2}\) :

Variable thermal conductivity parameter

\(C\) :

Species of the fluid phase concentration

\({\epsilon }_{3}\) :

Variable mass diffusivity parameter

\({N}_{{\text{p}}}\) :

Density particle phase

\({\nu }_{{\text{f}}}\) :

Kinematic viscosity

\({\sigma }_{1}\) :

Surface tension

\({\tau }_{{\text{v}}}\) :

Relaxation time of the dust particles

\({\Phi }_{{\text{p}}}\) :

Volume fraction of dust particle

\({\gamma }_{{\text{T}}}\) :

Surface tension coefficients for temperature

\({\sigma }^{*}\) :

Stefan-Boltzmann constant

\({D}_{{\text{m}}}\) :

Mass diffusivity coefficient

\({\Phi }_{2}\) :

Volume fraction of \({\text{Cu}}\)

\({D}_{{\text{n}}}\) :

Diffusivity of microorganisms

\(\gamma\) :

Specific heat ratio

\({\tau }_{{\text{w}}}\) :

Surface shear stress

\({\sigma }_{0}\) :

Surface tension

\({\beta }_{{\text{T}}}\) :

Thermal dust parameter

\({\tau }_{{\text{C}}}\) :

Time required by a dust particle to adjust its relative concentration to the fluid

\({V}_{{\text{T}}}\) :

Thermophoretic velocity

\(N\) :

Density of motile microorganism

\(k\) :

Thermophoretic coefficient

\({T}_{\text{ref}}\) :

Reference temperature

\(\beta\) :

Thermal expansion coefficient

\(\tau\) :

Thermpopherotic parameter

\({\beta }_{{\text{n}}}^{*}\) :

Bioconvection expansion coefficient

\({C}_{{\text{m}}}\) :

Specific heat of the dust particle

\({T}_{0}\) :

Constants

\({r}_{{\text{P}}}\) :

Radius of dust particles

\({\epsilon }_{1}\) :

Viscosity variation exponent

\(L\) :

Dust particle mass concentration

\({{\text{Sh}}}_{{\text{x}}}\) :

Sherwood number

\(m\) :

Mass of dust particles

\({\text{Mn}}\) :

Marangoni number

\({q}_{{\text{m}}}\) :

Mass flux

\({\tau }_{{\text{m}}}\) :

Time required by the motile organisms

\(f\) :

Base fluid

\({\prime}\) :

Derivative with respect to \(\eta\)

\(\infty\) :

Ambient

\({\text{hnf}}\) :

Hybrid nanofluid

\(0\) :

Surface

References

  1. Abbas M, Khan N, Shehzad SA. Thermophoretic particle deposition in carreau-yasuda fluid over chemical reactive riga plate. Adv Mech Eng. 2023;15(1):16878132221135096.

    Article  CAS  Google Scholar 

  2. Abbas M, Khan N, Hashmi MS, Younis J. Numerically analysis of Marangoni convective flow of hybrid nanofluid over an infinite disk with thermophoresis particle deposition. Sci Rep. 2023;13(1):5036.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chu YM, Al-Khaled K, Khan N, Khan MI, Khan SU, Hashmi MS, Iqbal MA, Tlili I. Study of Buongiorno’s nanofluid model for flow due to stretching disks in presence of gyrotactic microorganisms. Ain Shams Eng J. 2021;12(4):3975–85.

    Article  Google Scholar 

  4. Raju CS, Hoque MM, Sivasankar T. Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms. Adv Powder Technol. 2017;28(2):575–83.

    Article  CAS  Google Scholar 

  5. Pedley TJ. Instability of uniform micro-organism suspensions revisited. J Fluid Mech. 2010;647:335–59.

    Article  ADS  MathSciNet  Google Scholar 

  6. Abdul Latiff NA, Uddin MJ, Bég OA, Ismail AI. Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet. Proc Inst Mechan Eng Part N:J Nanomater Nanoeng Nanosyst. 2016;230(4):177–87.

    CAS  Google Scholar 

  7. Khan N, Nabwey HA, Hashmi MS, Khan SU, Tlili I. A theoretical analysis for mixed convection flow of maxwell fluid between two infinite isothermal stretching disks with heat source/sink. Symmetry. 2019;12(1):62.

    Article  ADS  Google Scholar 

  8. Khan N, Al-Khaled K, Khan A, Hashmi MS, Khan SU, Khan MI, Qayyum S. Aspects of constructive/destructive chemical reactions for viscous fluid flow between deformable wall channel with absorption and generation features. Int Commun Heat Mass Transfer. 2021;1(120): 104956.

    Article  Google Scholar 

  9. Khan N, Mahmood T, Sajid M, Hashmi MS. Heat and mass transfer on MHD mixed convection axisymmetric chemically reactive flow of Maxwell fluid driven by exothermal and isothermal stretching disks. Int J Heat Mass Transf. 2016;1(92):1090–105.

    Article  Google Scholar 

  10. Makinde OD, Animasaun IL. Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int J Therm Sci. 2016;1(109):159–71.

    Article  Google Scholar 

  11. Ahmad S, Ali K, Nisar KS, Faridi AA, Khan N, Jamshed W, Khan TY, Saleel CA. Features of Cu and TiO2 in the flow of engine oil subject to thermal jump conditions. Sci Rep. 2021;11(1):19592.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan MI, Waqas M, Hayat T, Khan MI, Alsaedi A. Behavior of stratification phenomenon in flow of Maxwell nanomaterial with motile gyrotactic microorganisms in the presence of magnetic field. Int J Mech Sci. 2017;1(131):426–34.

    Article  Google Scholar 

  13. Lin Y, Zheng L, Zhang X. MHD Marangoni boundary layer flow and heat transfer of pseudo-plastic nanofluids over a porous medium with a modified model. Mech Time-Dep Mater. 2015;19:519–36.

    Article  ADS  CAS  Google Scholar 

  14. Guedri K, Hashmi MS, Al-Khaled K, Khan MI, Khan N, Khan SU, Galal AM. Numerical simulation for two-phase dusty thermally developed Marangoni forced convective flow of Williamson material: a finite difference scheme. ZAMM-J Appl Math Mechan/Z für Angew Math Mech. 2023;103(3): e202100206.

    Article  MathSciNet  Google Scholar 

  15. Abbas M, Khan N, Alshomrani AS, Hashmi MS, Inc M. Performance-based comparison of Xue and Yamada-Ota models of ternary hybrid nanofluid flow over a slendering stretching sheet with activation energy and melting phenomena. Case Stud Therm Eng. 2023;1(50): 103427.

    Article  Google Scholar 

  16. Abbas M, Khan N, Shehzad SA. Analytical simulation of magneto-marangoni convective flow of Walter-B fluid with activation energy and Soret-Dufour effects. Adv Mech Eng. 2023;15(9):16878132231199048.

    Article  Google Scholar 

  17. Aly EH, Ebaid A. Exact analysis for the effect of heat transfer on MHD and radiation marangoni boundary layer nanofluid flow past a surface embedded in a porous medium. J Mol Liq. 2016;1(215):625–39.

    Article  Google Scholar 

  18. Mat NA, Arifin NM, Nazar R, Ismail F. Radiation effect on Marangoni convection boundary layer flow of a nanofluid. Math Sci. 2012;6:1–6.

    Article  Google Scholar 

  19. Gevorgyan GS, Petrosyan KA, Hakobyan RS, Alaverdyan RB. Experimental investigation of marangoni convection in nanofluids. J Contemp Phys (Armen Acad Sci). 2017;52:362–5.

    Article  ADS  CAS  Google Scholar 

  20. Abbasi FM, Shehzad SA, Hayat T, Ahmad B. Doubly stratified mixed convection flow of maxwell nanofluid with heat generation/absorption. J Magn Magn Mater. 2016;15(404):159–65.

    Article  Google Scholar 

  21. Mahanthesh B, Gireesha BJ, Gorla RR, Abbasi FM, Shehzad SA. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J Magn Magn Mater. 2016;1(417):189–96.

    Article  ADS  Google Scholar 

  22. Si X, Li H, Zheng L, Shen Y, Zhang X. A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate. Int J Heat Mass Transf. 2017;1(105):350–8.

    Article  Google Scholar 

  23. Urmi W, Rahman MM, Hamzah WA. An experimental investigation on the thermophysical Propertyes of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids. Int Commun Heat Mass Transfer. 2020;1(116): 104663.

    Article  Google Scholar 

  24. Murtaza S, Kumam P, Ahmad Z, Ramzan M, Ali I, Saeed A. Computational simulation of unsteady squeezing hybrid nanofluid flow through a horizontal channel comprised of metallic nanoparticles. J Nanofluids. 2023;12(5):1327–34.

    Article  Google Scholar 

  25. Bano A, Dawood A, Rida, Saira F, Malik A, Alkholief M, Ahmad H, Khan MA, Ahmad Z, Bazighifan O. Enhancing catalytic activity of gold nanoparticles in a standard redox reaction by investigating the impact of AuNPs size, temperature and reductant concentrations. Sci Rep. 2023;13(1):12359.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murtaza S, Kumam P, Bilal M, Sutthibutpong T, Rujisamphan N, Ahmad Z. Parametric simulation of hybrid nanofluid flow consisting of cobalt ferrite nanoparticles with second-order slip and variable viscosity over an extending surface. Nanotechnol Rev. 2023;12(1):20220533.

    Article  CAS  Google Scholar 

  27. Ali F, Ahmad Z, Arif M, Khan I, Nisar KS. A time fractional model of generalized Couette flow of couple stress nanofluid with heat and mass transfer: applications in engine oil. IEEE Access. 2020;3(8):146944–66.

    Article  Google Scholar 

  28. El Kot MA, Abd EY. Model of LDL-C concentration of blood flow through a vertical porous microchannel with multiple stenoses: computational simulation. J Taibah Univ Sci. 2023;17(1):2176194.

    Article  Google Scholar 

  29. Kot ME, Elmaboud YA. Hybrid nanofluid flows through a vertical diseased coronary artery with heat transfer. J Mech Med Biol. 2021;21(02):2150012.

    Article  Google Scholar 

  30. Acharya N, Mabood F. On the hydrothermal features of radiative Fe3 O4—graphene hybrid nanofluid flow over a slippery bended surface with heat source/sink. J Therm Anal Calorim. 2021;143:1273–89.

    Article  CAS  Google Scholar 

  31. Ali K, Faridi AA, Khan N, Nisar KS, Ahmad S. On the suitability of differential transform method for solving the self-similar channel flow problems. ZAMM-J Appl Math Mech/Z für Angew Math Mech. 2023;103(1): e202100358.

    Article  MathSciNet  Google Scholar 

  32. Hashmi MS, Al-Khaled K, Khan N, Khan SU, Tlili I. Buoyancy driven mixed convection flow of magnetized Maxell fluid with homogeneous-heterogeneous reactions with convective boundary conditions. Results Phys. 2020;1(19): 103379.

    Article  Google Scholar 

  33. Chu YM, Hashmi MS, Khan N, Khan SU, Khan MI, Kadry S, Abdelmalek Z. Thermophoretic particles deposition features in thermally developed flow of maxwell fluid between two infinite stretched disks. J Mater Res Technol. 2020;9(6):12889–98.

    Article  CAS  Google Scholar 

  34. Ali R, Asjad MI, Aldalbahi A, Rahimi-Gorji M, Rahaman M. Convective flow of a maxwell hybrid nanofluid due to pressure gradient in a channel. J Therm Anal Calorim. 2021;143:1319–29.

    Article  CAS  Google Scholar 

  35. Usman M, Hamid M, Zubair T, Haq RU, Wang W. Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int J Heat Mass Transf. 2018;1(126):1347–56.

    Article  Google Scholar 

  36. Alam MS, Hossain SC, Rahman MM. Transient thermophoretic particle deposition on forced convective heat and mass transfer flow due to a rotating disk. Ain Shams Eng J. 2016;7(1):441–52.

    Article  Google Scholar 

  37. Goren SL. Thermophoresis of aerosol particles in the laminar boundary layer on a flat plate. J Coll Interface Sci. 1977;61(1):77–85.

    Article  ADS  CAS  Google Scholar 

  38. Talbot LR, Cheng RK, Schefer RW, Willis DR. Thermophoresis of particles in a heated boundary layer. J Fluid Mech. 1980;101(4):737–58.

    Article  ADS  Google Scholar 

  39. Batchelor GK, Shen C. Thermophoretic deposition of particles in gas flowing over cold surfaces. J Coll Interface Sci. 1985;107(1):21–37.

    Article  ADS  CAS  Google Scholar 

  40. Chiou MC. Effect of thermophoresis on submicron particle deposition from a forced laminar boundary layer flow onto an isothermal moving plate. Acta Mech. 1998;129(3–4):219–29.

    Article  Google Scholar 

  41. Alam MS, Rahman MM, Sattar MA. On the effectiveness of viscous dissipation and Joule heating on steady Magnetohydrodynamic heat and mass transfer flow over an inclined radiate isothermal permeable surface in the presence of thermophoresis. Commun Nonlinear Sci Numer Simul. 2009;14(5):2132–43.

    Article  ADS  Google Scholar 

  42. Damseh RA, Tahat MS, Benim AC. Nonsimilar solutions of magnetohydrodynamic and thermophoresis particle deposition on mixed convection problem in porous media along a vertical surface with variable wall temperature. Prog Comput Fluid Dyn Int J. 2009;9(1):58–65.

    Article  MathSciNet  Google Scholar 

  43. Postelnicu A. Effects of thermophoresis particle deposition in free convection boundary layer from a horizontal flat plate embedded in a porous medium. Int J Heat Mass Trans. 2007;50(15–16):2981–5.

    Article  Google Scholar 

  44. Khan N, Mahmood T. Thermophoresis particle deposition and internal heat generation on MHD flow of an Oldroyd-B nanofluid between radiative stretching disks. J Mol Liq. 2016;1(216):571–82.

    Article  Google Scholar 

  45. Gorla SRR. Two-phase boundary layer flow, heat and mass transfer of a dusty liquid past a stretching sheet with therma radiation. Int J Ind Math. 2016;8(3):279–92.

    Google Scholar 

  46. Mamatha SU, Ramesh Babu K, Durga Prasad P, Raju CS, Varma SV. Mass transfer analysis of two-phase flow in a suspension of microorganisms. Arch Thermodyn. 2020. https://doi.org/10.24425/ather.2020.132954.

    Article  Google Scholar 

  47. Megahed AM, Reddy MG, Abbas W. Modeling of MHD fluid flow over an unsteady stretching sheet with thermal radiation, variable fluid properties and heat flux. Math Comput Simul. 2021;1(185):583–93.

    Article  MathSciNet  Google Scholar 

  48. Ghaly AY, Seddeek MA. Chebyshev finite difference method for the effects of chemical reaction, heat and mass transfer on laminar flow along a semi infinite horizontal plate with temperature dependent viscosity. Chaos Solitons Fractals. 2004;19(1):61–70.

    Article  ADS  CAS  Google Scholar 

  49. Qureshi IH, Nawaz M, Rana S, Zubair T. Galerkin finite element study on the effects of variable thermal conductivity and variable mass diffusion conductance on heat and mass transfer. Commun Theor Phys. 2018;70(1):049.

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Ethics declarations

Conflict of interest

There exist no conflict of interest regarding this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M., Khan, N., Hashmi, M.S. et al. Scrutinization of marangoni convective flow of dusty hybrid nanofluid with gyrotactic microorganisms and thermophoretic particle deposition. J Therm Anal Calorim 149, 1443–1463 (2024). https://doi.org/10.1007/s10973-023-12750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12750-9

Keywords

Navigation