Log in

Magnetohydrodynamics natural convection and entropy generation in a hybrid nanofluid complex enclosure considering finned-heater

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current study investigates the influence of MHD on the natural heat transfer considering the irreversibility in a complex-shaped cavity with the existence of inner roundish heater with four attached fins utilizing finite element formulation. Three different cases are considered to figure out the major characteristics of temperature, stream function and total generated entropy, Nusselt number in addition to Bejan number. Concentrated attention is directed to the enclosure geometry modifications and the varied length of attached fins and their impacts. The parameters of study are ranged as follows; Rayleigh number \(\left({10}^{3}\le \mathrm{Ra}\le {10}^{6}\right)\), Hartmann number \(\left(0\le \mathrm{Ha}\le 60\right)\), fins’ length \(\left(0.1\le H\le 0.3\right)\). The novelty of the present work is on studying all of these parameters in the complex enclosure considering three different cases of the shape of the outer walls so that the star-shaped enclosure is classified as case 1. With increasing the length that separated between the outer arc of the star enclosure, the octagonal-shaped enclosure will appear as denoted in case 2 and 3. It had been seen that at low Rayleigh number \(\left(\mathrm{Ra}={10}^{4}\right)\), case one is the best choice in heat transfer bettering while it is the lowest case at high Rayleigh number \(\left(\mathrm{Ra}={10}^{6}\right)\). Additionally, the influence of Hartmann number on the total entropy generation reduction percentage for case three is \(63.57\%\) while it is 51.11% for case two while Hartmann number had negligible impact of entropy generation reduction for case one. Lastly, the highest Bejan number is at fin length \(\left(H=0.3\right)\) is recorded for case one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

B :

Magnetic field

C p :

Specific heat at constant pressure (kJ kg1 K1)

g :

Gravitational acceleration (m s2)

k :

Thermal conductivity (W m1 K1)

P :

Dimensionless pressure

Pr:

Prandtl number (νf/αf)

H :

Length of heater (m)

R o :

Base circle (m)

Ra:

Rayleigh number

Ha:

Hartmann number

T :

Temperature (K)

T c :

Temperature of the cold surface (K)

T h :

Temperature of the hot surface (K)

S :

Dimensional Entropy Generation

\({\overline{S} }_{\mathrm{gen}}\) :

Dimensionless Entropy Generation

Be:

Bejan Number

\(\mathrm{Nu}\) :

Average Nusselt number hot inner circular cylinder

U :

Dimensionless velocity component in x-direction

u :

Velocity component in x-direction (m s1)

V :

Dimensionless velocity component in y-direction

v :

Velocity component in y-direction (m s1)

X :

Dimensionless coordinate in horizontal direction

x :

Cartesian coordinates in horizontal direction (m)

Y :

Dimensionless coordinate in vertical direction

y :

Cartesian coordinate in vertical direction (m)

α :

Thermal diffusivity (m2 s1)

θ :

Dimensionless temperature (TTc/ΔT)

\({\rm K}\) :

Thermal Conductivity (W m1·K)

\(\psi\) :

Dimensional stream function (m2 s1)

Φ:

Angle of circular cylinder

\(\Psi\) :

Dimensionless stream function

\(\sigma\) :

Electrical conductivity

Gr:

Grashof number

Μ :

Dynamic viscosity (kg m1 s1)

Ν :

Kinematic viscosity (m2 s1)

Β :

Volumetric coefficient of thermal expansion (K1)

Ρ :

Density (kg m3)

c:

Cold

f:

Fluid (pure)

h:

Hot

hnf:

Hybrid nanofluid

Min:

Minimum

Amp.:

Amplitude (m)

Max:

Maximum

n :

Number of corrugations

References

  1. Mousa MH, Yang C-M, Nawaz K, Miljkovic N. Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling. Renew Sustain Energy Rev. 2022;155: 111896.

    Article  CAS  Google Scholar 

  2. Abdulkadhim A, Abed IM, Said NM. Experimental investigation of heat transfer for nanofluid–porous magnetohydrodynamic thermally driven flow in a novel I-shaped enclosure. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12069-5.

    Article  Google Scholar 

  3. Babu R, Kumar P, Roy S, Ganesan R. A comprehensive review on compound heat transfer enhancement using passive techniques in a heat exchanger. Mater Today Proc. 2022;54:428–36.

    Article  Google Scholar 

  4. Gülmüş B, Muratçobanoğlu B, Mandev E, Afshari F. Experimental and numerical investigation of flow and thermal characteristics of aluminum block exchanger using surface-modified and recycled nanofluids. Int J Numer Methods Heat Fluid Flow. 2023;33:2685–709.

    Article  Google Scholar 

  5. Hamza NH, Theeb MA, Sheremet MA. Heat transfer enhancement in a corrugated chamber filled with hybrid nanofluid under an influence of internal heated plate. Int J Numer Meth Heat Fluid Flow. 2023;33(9):3094–110. https://doi.org/10.1108/HFF-03-2023-0113.

    Article  Google Scholar 

  6. Hamza NH, Abdulrazzaq NM, Theeb MA, Sheremet M, Abdulkadhim A. The influence of magnetic field on entropy generation in a wavy cavity equipped with internal heated plate using Darcy–Brinkman–Forchheimer model. Int J Thermofluids. 2023;20: 100463. https://doi.org/10.1016/j.ijft.2023.100463.

    Article  Google Scholar 

  7. Al-Ali HM, Hamza NH. Numerical and experimental study of the influence of extended surfaces in rectangular channel subjected to constant heat flux. Exp Heat Transf. 2023;2023:1–19. https://doi.org/10.1080/08916152.2023.2176567.

    Article  Google Scholar 

  8. Bhattacharyya S, Vishwakarma DK, Srinivasan A, Soni MK, Goel V, Sharifpur M, et al. Thermal performance enhancement in heat exchangers using active and passive techniques: a detailed review. J Therm Anal Calorim. 2022;147(17):9229–81.

    Article  CAS  Google Scholar 

  9. Sefiane K, Koşar A. Prospects of heat transfer approaches to dissipate high heat fluxes: opportunities and challenges. Appl Therm Eng. 2022;215:118990.

    Article  CAS  Google Scholar 

  10. Afshari F, Sözen A, Khanlari A, Tuncer A. Heat transfer enhancement of finned shell and tube heat exchanger using Fe2O3/water nanofluid. J Cent South Univ. 2021;28(11):3297–309.

    Article  CAS  Google Scholar 

  11. Ali B, Mishra NK, Rafique K, Jubair S, Mahmood Z, Eldin SM. Mixed convective flow of hybrid nanofluid over a heated stretching disk with zero-mass flux using the modified Buongiorno model. Alex Eng J. 2023;72:83–96. https://doi.org/10.1016/j.aej.2023.03.078.

    Article  Google Scholar 

  12. Ali B, Jubair S, Duraihem FZ. Numerical analysis of viscous dissipative unsteady darcy forchhemier hybrid nanofluid flow subject to magnetic effect across a stretching cylinder. Mater Today Commun. 2023;36: 106532. https://doi.org/10.1016/j.mtcomm.2023.106532.

    Article  CAS  Google Scholar 

  13. Çiçek O, Sheremet MA, Baytaş AC. Effect of natural convection hybrid nanofluid flow on the migration and deposition of MWCNT-Fe3O4 in a square enclosure. Int J Therm Sci. 2023;190: 108318. https://doi.org/10.1016/j.ijthermalsci.2023.108318.

    Article  CAS  Google Scholar 

  14. Hickie-Bentzen A, Tasnim SH, Mahmud S. Magnetohydrodynamic thermal diode using natural convection of In–Ga–Sn alloy in a square enclosure with an insulating body. Therm Sci Eng Prog. 2023;39: 101736. https://doi.org/10.1016/j.tsep.2023.101736.

    Article  CAS  Google Scholar 

  15. Tasnim S, Mitra A, Saha H, Islam MQ, Saha S. MHD conjugate natural convection and entropy generation of a nanofluid filled square enclosure with multiple heat-generating elements in the presence of Joule heating. Results Eng. 2023;17: 100993. https://doi.org/10.1016/j.rineng.2023.100993.

    Article  CAS  Google Scholar 

  16. Alazzam A, Qasem NAA, Aissa A, Abid MS, Guedri K, Younis O. Natural convection characteristics of nano-encapsulated phase change materials in a rectangular wavy enclosure with heating element and under an external magnetic field. J Energy Storage. 2023;57: 106213. https://doi.org/10.1016/j.est.2022.106213.

    Article  Google Scholar 

  17. Kushawaha D, Yadav S, Singh DK. Thermo-solute natural convection with heat and mass lines in a uniformly heated and soluted rectangular enclosure for low Prandtl number fluids. Int J Therm Sci. 2020;148: 106160. https://doi.org/10.1016/j.ijthermalsci.2019.106160.

    Article  Google Scholar 

  18. Acharya N. On the magnetohydrodynamic natural convective alumina nanofluidic transport inside a triangular enclosure fitted with fins. J Indian Chem Soc. 2022;99(12): 100784. https://doi.org/10.1016/j.jics.2022.100784.

    Article  CAS  Google Scholar 

  19. Islam Z, Azad AK, Hasan MJ, Hossain R, Rahman MM. Unsteady periodic natural convection in a triangular enclosure heated sinusoidally from the bottom using CNT-water nanofluid. Results Eng. 2022;14: 100376. https://doi.org/10.1016/j.rineng.2022.100376.

    Article  CAS  Google Scholar 

  20. Choi C, Jeong S, Ha MY, Yoon HS. Effect of a circular cylinder’s location on natural convection in a rhombus enclosure. Int J Heat Mass Transf. 2014;77:60–73. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.071.

    Article  Google Scholar 

  21. Dogonchi AS, Waqas M, Ganji DD. Shape effects of copper-oxide (CuO) nanoparticles to determine the heat transfer filled in a partially heated rhombus enclosure: CVFEM approach. Int Commun Heat Mass Transfer. 2019;107:14–23. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.014.

    Article  CAS  Google Scholar 

  22. Al-Mudhaf AF, Rashad AM, Ahmed SE, Chamkha AJ, El-Kabeir SMM. Soret and Dufour effects on unsteady double diffusive natural convection in porous trapezoidal enclosures. Int J Mech Sci. 2018;140:172–8. https://doi.org/10.1016/j.ijmecsci.2018.02.049.

    Article  Google Scholar 

  23. Chabani I, Mebarek-Oudina F, Vaidya H, Ismail AI. Numerical analysis of magnetic hybrid Nano-fluid natural convective flow in an adjusted porous trapezoidal enclosure. J Magn Magn Mater. 2022;564: 170142. https://doi.org/10.1016/j.jmmm.2022.170142.

    Article  CAS  Google Scholar 

  24. Abdul Hakeem AK, Saravanan S, Kandaswamy P. Natural convection in a square cavity due to thermally active plates for different boundary conditions. Comput Math Appl. 2011;62(1):491–6. https://doi.org/10.1016/j.camwa.2011.05.030.

    Article  MathSciNet  Google Scholar 

  25. Hakeem AKA, Saravanan S, Kandaswamy P. Buoyancy convection in a square cavity with mutually orthogonal heat generating baffles. Int J Heat Fluid Flow. 2008;29(4):1164–73. https://doi.org/10.1016/j.ijheatfluidflow.2008.01.015.

    Article  Google Scholar 

  26. Li Z, Hussein AK, Younis O, Afrand M, Feng S. Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects. Int Commun Heat Mass Transf. 2020;116: 104650.

    Article  CAS  Google Scholar 

  27. Al-Farhany K, Abdulkadhim A, Hamzah HK, Ali FH, Chamkha A. MHD effects on natural convection in a U-shaped enclosure filled with nanofluid-saturated porous media with two baffles. Prog Nucl Energy. 2022;145: 104136.

    Article  CAS  Google Scholar 

  28. Zontul H, Hamzah H, Sahin B. Impact of periodic magnetic source on natural convection and entropy generation of ferrofluids in a baffled cavity. Int J Numer Meth Heat Fluid Flow. 2021;31(12):3547–75. https://doi.org/10.1108/HFF-10-2020-0671.

    Article  Google Scholar 

  29. Habibishandiz M, Saghir Z. MHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder. Int J Thermofluids. 2022;14: 100151.

    Article  CAS  Google Scholar 

  30. Keya S, Yeasmin S, Rahman M, Karim M, Amin M. Mixed convection heat transfer in a lid-driven enclosure with a double-pipe heat exchanger. Int J Thermofluids. 2022;13: 100131.

    Article  Google Scholar 

  31. Zaim A, Aissa A, Mebarek-Oudina F, Mahanthesh B, Lorenzini G, Sahnoun M, et al. Galerkin finite element analysis of magneto-hydrodynamic natural convection of Cu-water nanoliquid in a baffled U-shaped enclosure. Propuls Power Res. 2020;9(4):383–93. https://doi.org/10.1016/j.jppr.2020.10.002.

    Article  Google Scholar 

  32. Abderrahmane A, Qasem NA, Younis O, Marzouki R, Mourad A, Shah NA, et al. MHD hybrid nanofluid mixed convection heat transfer and entropy generation in a 3-D triangular porous cavity with zigzag wall and rotating cylinder. Mathematics. 2022;10(5):769.

    Article  Google Scholar 

  33. Wahid NS, Arifin NM, Khashi’ie NS, Pop I, Bachok N, Hafidzuddin EH. MHD hybrid nanofluid flow with convective heat transfer over a permeable stretching/shrinking surface with radiation. Int J Numer Meth Heat Fluid Flow. 2022;32(5):1706–27.

    Article  Google Scholar 

  34. Devi N, Moolya S, Öztop HF, Abu-Hamdeh N, Padmanathan P, Satheesh A. A review on ferrofluids with the effect of MHD and entropy generation due to convective heat transfer. Eur Phys J Plus. 2022;137(4):482.

    Article  CAS  Google Scholar 

  35. Ali FH, Hamzah HK, Egab K, Arıcı M, Shahsavar A. Non-Newtonian nanofluid natural convection in a U-shaped cavity under magnetic field. Int J Mech Sci. 2020;186: 105887. https://doi.org/10.1016/j.ijmecsci.2020.105887.

    Article  Google Scholar 

  36. Kadhim HT, Jabbar FA, Rona A. Cu-Al2O3 hybrid nanofluid natural convection in an inclined enclosure with wavy walls partially layered by porous medium. Int J Mech Sci. 2020;186: 105889. https://doi.org/10.1016/j.ijmecsci.2020.105889.

    Article  Google Scholar 

  37. Goudarzi S, Shekaramiz M, Omidvar A, Golab E, Karimipour A, Karimipour A. Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection. Powder Technol. 2020;375:493–503. https://doi.org/10.1016/j.powtec.2020.07.115.

    Article  CAS  Google Scholar 

  38. Izadi M, Mohebbi R, Delouei AA, Sajjadi H. Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int J Mech Sci. 2019;151:154–69. https://doi.org/10.1016/j.ijmecsci.2018.11.019.

    Article  Google Scholar 

  39. Abdel-Nour Z, Aissa A, Mebarek-Oudina F, Rashad AM, Ali HM, Sahnoun M, et al. Magnetohydrodynamic natural convection of hybrid nanofluid in a porous enclosure: numerical analysis of the entropy generation. J Therm Anal Calorim. 2020;141(5):1981–92. https://doi.org/10.1007/s10973-020-09690-z.

    Article  CAS  Google Scholar 

  40. Alsabery A, Kadhim H, Ismael M, Hashim I, Chamkha A. Impacts of amplitude and heat source on natural convection of hybrid nanofluids into a wavy enclosure via heatline approach. Waves Random Complex Media. 2021:1–25.

  41. Tayebi T, Chamkha AJ. Magnetohydrodynamic natural convection heat transfer of hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. J Therm Sci Eng Appl. 2019. https://doi.org/10.1115/1.4044857.

    Article  Google Scholar 

  42. Du R, Gokulavani P, Muthtamilselvan M, Al-Amri F, Abdalla B. Influence of the Lorentz force on the ventilation cavity having a centrally placed heated baffle filled with the Cu−Al2O3−H2O hybrid nanofluid. Int Commun Heat Mass Transfer. 2020;116: 104676.

    Article  CAS  Google Scholar 

  43. Geridonmez BP, Oztop HF. Natural convection of hybrid nanofluid flow in the presence of multiple vertical partial magnetic fields in a trapezoidal shaped cavity: Multiple partial MHD effect on Ag-MgO/H2O nanofluid flow in a trapezoidal shaped cavity. Eur Phys J Spec Top. 2022;231(13–14):2761–71.

    Article  CAS  Google Scholar 

  44. Nayak M, Karimi N, Chamkha AJ, Dogonchi AS, El-Sapa S, Galal AM. Efficacy of diverse structures of wavy baffles on heat transfer amplification of double-diffusive natural convection inside a C-shaped enclosure filled with hybrid nanofluid. Sustain Energy Technol Assess. 2022;52: 102180.

    Google Scholar 

  45. Shah IA, Bilal S, Noeiaghdam S, Fernandez-Gamiz U, Shahzad H. Thermosolutal natural convection energy transfer in magnetically influenced casson fluid flow in hexagonal enclosure with fillets. Results Eng. 2022;15: 100584. https://doi.org/10.1016/j.rineng.2022.100584.

    Article  Google Scholar 

  46. Fayz-Al-Asad M, Sarker M, Munshi M. Numerical investigation of natural convection flow in a hexagonal enclosure having vertical fin. J Sci Res. 2019;11(2):173–83.

    Article  CAS  Google Scholar 

  47. Seyyedi SM, Dogonchi A, Hashemi-Tilehnoee M, Ganji D, Chamkha AJ. Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure. Int J Numer Methods Heat Fluid Flow. 2020;30:4811–36.

    Article  Google Scholar 

  48. Islam Q, Hasan MN, Saha S, Saha G. Natural convection heat transfer within octagonal enclosure. Int J Eng. 2010;23(1):1–10.

    Google Scholar 

  49. Hosseinzadeh K, Roghani S, Mogharrebi AR, Asadi A, Ganji DD. Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field. J Therm Anal Calorim. 2021;143(2):1413–24. https://doi.org/10.1007/s10973-020-10376-9.

    Article  CAS  Google Scholar 

  50. Acharya N. On the hydrothermal behavior and entropy analysis of buoyancy driven magnetohydrodynamic hybrid nanofluid flow within an octagonal enclosure fitted with fins: application to thermal energy storage. J Energy Storage. 2022;53: 105198.

    Article  Google Scholar 

  51. Ilis GG, Mobedi M, Sunden B. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass Transf. 2008;35(6):696–703.

    Article  CAS  Google Scholar 

  52. Tayebi T, Öztop HF, Chamkha AJ. Natural convection and entropy production in hybrid nanofluid filled-annular elliptical cavity with internal heat generation or absorption. Therm Sci Eng Prog. 2020;19: 100605. https://doi.org/10.1016/j.tsep.2020.100605.

    Article  Google Scholar 

  53. Aminossadati S, Ghasemi B. Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. Eur J Mech B/Fluids. 2009;28(5):630–40.

    Article  Google Scholar 

  54. Hosseinzadeh K, Roghani S, Mogharrebi A, Asadi A, Ganji D. Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field. J Therm Anal Calorim. 2021;143:1413–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under Grant Number RGP. 2/7/44

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejla Mahjoub Said.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkadhim, A., Hamzah, H.K., Hamza, N.H. et al. Magnetohydrodynamics natural convection and entropy generation in a hybrid nanofluid complex enclosure considering finned-heater. J Therm Anal Calorim 149, 1535–1563 (2024). https://doi.org/10.1007/s10973-023-12732-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12732-x

Keywords

Navigation