Log in

Experimental study on Ag-modified CeO2 as the catalyst for soot oxidation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ag/CeO2 catalyst is synthesized by hydrothermal method, which has been studied under the effects of different catalyst content, ash and Ag load through activity and characterization tests. Ag loading increases the catalytic activity of CeO2, and the peak combustion temperature of soot decreases by 74 °C. The catalytic effect of Ag/CeO2 is affected by catalyst content, Ag load and ash content. The optimum mass ratio of soot/catalyst is 1/10, and 10 mass% is the saturation value of Ag loading at CeO2. Ash inhibits the promoting effect of Ag/CeO2 in the oxidation process of soot. This study provides a theoretical basis for the industrial application of Ag/CeO2 catalyst in gasoline engine and also provides a research idea for the low-temperature oxidation of soot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Luo Y, Zhu L, Fang J, Zhuang Z, Guan C, **a C, et al. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel. Appl Therm Eng. 2015;89:647–55. https://doi.org/10.1016/j.applthermaleng.2015.06.060.

    Article  CAS  Google Scholar 

  2. Hu Z, Lu Z, Zhang H, Song B, Quan Y. Effect of oxidation temperature on oxidation reactivity and nanostructure of particulate matter from a China VI GDI vehicle. Atmos Environ. 2021;256:118461. https://doi.org/10.1016/j.atmosenv.2021.118461.

    Article  CAS  Google Scholar 

  3. Seong H, Choi S, Zaluzec NJ, Lee S, Wu T, Shao H, et al. Identification of engine oil-derived ash nanoparticles and ash formation process for a gasoline direct-injection engine. Environ Pollut. 2021;272:116390. https://doi.org/10.1016/j.envpol.2020.116390.

    Article  CAS  PubMed  Google Scholar 

  4. Wei J, Fan C, Qiu L, Qian Y, Wang C, Teng Q, et al. Impact of methanol alternative fuel on oxidation reactivity of soot emissions from a modern CI engine. Fuel. 2020;268:117352. https://doi.org/10.1016/j.fuel.2020.117352.

    Article  CAS  Google Scholar 

  5. Gao J, Wang Y, Chen H, Laurikko J, Liu Y, Pellikka AP, et al. Variations of significant contribution regions of NOx and PN emissions for passenger cars in the real-world driving. J Hazard Mater. 2021;424:127590. https://doi.org/10.1016/j.jhazmat.2021.127590.

    Article  CAS  PubMed  Google Scholar 

  6. Yang Z, Ge Y, Thomas D, Wang X, Su S, Li H, et al. Real driving particle number (PN) emissions from China-6 compliant PFI and GDI hybrid electrical vehicles. Atmos Environ. 2019;199:70–9. https://doi.org/10.1016/j.atmosenv.2018.11.037.

    Article  CAS  Google Scholar 

  7. Zhu X, Ge T, Yang F, Wang R. Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air. Renew Sustain Energy Rev. 2021;137:110651. https://doi.org/10.1016/j.rser.2020.110651.

    Article  CAS  Google Scholar 

  8. Fang J, Meng Z, Li J, Du Y, Qin Y, Jiang Y, et al. The effect of operating parameters on regeneration characteristics and particulate emission characteristics of diesel particulate filters. Appl Therm Eng. 2019;148:860–7. https://doi.org/10.1016/j.applthermaleng.2018.11.066.

    Article  CAS  Google Scholar 

  9. Liu H, Li Z, Zhang M, Xu H, Ma X, Shuai S. Exhaust non-volatile particle filtration characteristics of three-way catalyst and influencing factors in a gasoline direct injection engine compared to gasoline particulate filter. Fuel. 2021;290:120065. https://doi.org/10.1016/j.fuel.2020.120065.

    Article  CAS  Google Scholar 

  10. Liu S, Wu X, Weng D, Ran R. Ceria-based catalysts for soot oxidation: a review. J Rare Earths. 2015;33:567–90. https://doi.org/10.1016/s1002-0721(14)60457-9.

    Article  CAS  Google Scholar 

  11. Shi Y, Lu Y, Cai Y, He Y, Zhou Y, Fang J. Evolution of particulate matter deposited in the DPF channel during low-temperature regeneration by non-thermal plasma. Fuel. 2022;318:123552.

    Article  CAS  Google Scholar 

  12. Pu P, Fang J, Zhang Q, Yang Y, Qin Z, Meng Z, et al. Effect of operating parameters on oxidation characteristics of soot under the synergistic action of soluble organic fractions and ash. ACS Omega. 2021;6:17372–8. https://doi.org/10.1021/acsomega.1c01537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng J, Li S, **ong L, Jiao Y, Yuan S, Wang J, et al. Preparation of nanostructured CeO2-ZrO2-based materials with stabilized surface area and their catalysis in soot oxidation. Appl Surf Sci. 2020;505:144301. https://doi.org/10.1016/j.apsusc.2019.144301.

    Article  CAS  Google Scholar 

  14. Liu J, Ulishney CJ, Dumitrescu CE. Experimental investigation of a heavy-duty natural gas engine performance operated at stoichiometric and lean operations. Energy Convers Manag. 2021;243:114401. https://doi.org/10.1016/j.enconman.2021.114401.

    Article  CAS  Google Scholar 

  15. Bueno-López A. Diesel soot combustion ceria catalysts. Appl Catal B. 2014;146:1–11. https://doi.org/10.1016/j.apcatb.2013.02.033.

    Article  CAS  Google Scholar 

  16. Shimokawa H, Kurihara Y, Kusaba H, Einaga H, Teraoka Y. Comparison of catalytic performance of Ag- and K-based catalysts for diesel soot combustion. Catal Today. 2012;185:99–103. https://doi.org/10.1016/j.cattod.2011.10.030.

    Article  CAS  Google Scholar 

  17. Liu S, Wu X, Liu W, Chen W, Ran R, Li M, et al. Soot oxidation over CeO2 and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J Catal. 2016;337:188–98. https://doi.org/10.1016/j.jcat.2016.01.019.

    Article  CAS  Google Scholar 

  18. Lim C-B, Kusaba H, Einaga H, Teraoka Y. Catalytic performance of supported precious metal catalysts for the combustion of diesel particulate matter. Catal Today. 2011;175:106–11. https://doi.org/10.1016/j.cattod.2011.03.062.

    Article  CAS  Google Scholar 

  19. Gao Y, Duan A, Liu S, Wu X, Liu W, Li M, et al. Study of Ag/Ce Nd1-O2 nanocubes as soot oxidation catalysts for gasoline particulate filters: balancing catalyst activity and stability by Nd do**. Appl Catal B. 2017;203:116–26. https://doi.org/10.1016/j.apcatb.2016.10.006.

    Article  CAS  Google Scholar 

  20. Skaf M, Aouad S, Hany S, Cousin R, Abi-Aad E, Aboukaïs A. Physicochemical characterization and catalytic performance of 10% Ag/CeO2 catalysts prepared by impregnation and deposition–precipitation. J Catal. 2014;320:137–46. https://doi.org/10.1016/j.jcat.2014.10.006.

    Article  CAS  Google Scholar 

  21. Mori K, Watanabe K, Sato T, Yamashita H. Environmental transmission electron microscopy study of diesel carbon soot combustion under simulated catalytic-reaction conditions. Chem Phys Chem. 2015;16:1347–51. https://doi.org/10.1002/cphc.201500261.

    Article  CAS  PubMed  Google Scholar 

  22. Gardini D, Christensen JM, Damsgaard CD, Jensen AD, Wagner JB. Visualizing the mobility of silver during catalytic soot oxidation. Appl Catal B. 2016;183:28–36. https://doi.org/10.1016/j.apcatb.2015.10.029.

    Article  CAS  Google Scholar 

  23. Sun M, Wang L, Feng B, Zhang Z, Lu G, Guo Y. The role of potassium in K/Co3O4 for soot combustion under loose contact. Catal Today. 2011;175:100–5. https://doi.org/10.1016/j.cattod.2011.04.044.

    Article  CAS  Google Scholar 

  24. Shang Z, Sun M, Che X, Wang W, Wang L, Cao X, et al. The existing states of potassium species in K-doped Co3O4 catalysts and their influence on the activities for NO and soot oxidation. Catal Sci Technol. 2017;7:4710–9. https://doi.org/10.1039/c7cy01444a.

    Article  CAS  Google Scholar 

  25. Lee J, Lee MW, Kim MJ, Lee JH, Lee EJ, Jung C, et al. Effects of La incorporation in catalytic activity of Ag/La-CeO2 catalysts for soot oxidation. J Hazard Mater. 2021;414:125523. https://doi.org/10.1016/j.jhazmat.2021.125523.

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Liu Y, Wang L, Zhan W, Guo Y, Guo Y. Soot combustion over Ag catalysts supported on shape-controlled CeO2. Catal Today. 2021;376:9–18. https://doi.org/10.1016/j.cattod.2020.10.043.

    Article  CAS  Google Scholar 

  27. Qu Z, Yu F, Zhang X, Wang Y, Gao J. Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation. Chem Eng J. 2013;229:522–32. https://doi.org/10.1016/j.cej.2013.06.061.

    Article  CAS  Google Scholar 

  28. Grabchenko MV, Mamontov GV, Zaikovskii VI, La Parola V, Liotta LF, Vodyankina OV. The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl Catal B Environ. 2020;260:118148. https://doi.org/10.1016/j.apcatb.2019.118148.

    Article  CAS  Google Scholar 

  29. Lee JH, Lee BJ, Lee D-W, Choung JW, Kim CH, Lee K-Y. Synergistic effect of Cu on a Ag-loaded CeO2 catalyst for soot oxidation with improved generation of active oxygen species and reducibility. Fuel. 2020;275:117930. https://doi.org/10.1016/j.fuel.2020.117930.

    Article  CAS  Google Scholar 

  30. Lee JH, Kim MJ, Lee EJ, Lee D-W, Kim CH, Lee K-Y. Promoting effect of Rh-impregnation on Ag/CeO2 catalyst for soot oxidation. Appl Surf Sci. 2022;572:151504. https://doi.org/10.1016/j.apsusc.2021.151504.

    Article  CAS  Google Scholar 

  31. Preda G, Pacchioni G. Formation of oxygen active species in Ag-modified CeO2 catalyst for soot oxidation: a DFT study. Catal Today. 2011;177:31–8. https://doi.org/10.1016/j.cattod.2011.04.036.

    Article  CAS  Google Scholar 

  32. Choi S, Seong H. Oxidation characteristics of gasoline direct-injection (GDI) engine soot: catalytic effects of ash and modified kinetic correlation. Combust Flame. 2015;162:2371–89. https://doi.org/10.1016/j.combustflame.2015.02.004.

    Article  CAS  Google Scholar 

  33. Choi S, Seong H. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine. Combust Flame. 2016;174:68–76. https://doi.org/10.1016/j.combustflame.2016.09.019.

    Article  CAS  Google Scholar 

  34. DimopoulosEggenschwiler P, Schreiber D, Schröter K. Characterization of the emission of particles larger than 10 nm in the exhaust of modern gasoline and CNG light duty vehicles. Fuel. 2021;291:120074. https://doi.org/10.1016/j.fuel.2020.120074.

    Article  CAS  Google Scholar 

  35. Wang-Hansen C, Ericsson P, Lundberg B, Skoglundh M, Carlsson P-A, Andersson B. Characterization of particulate matter from direct injected gasoline engines. Top Catal. 2013;56:446–51. https://doi.org/10.1007/s11244-013-9994-4.

    Article  CAS  Google Scholar 

  36. Matti MM. Chemical characterization of particulate emissions from diesel engines: a review. J Aerosol Sci. 2007;38:1079–118. https://doi.org/10.1016/j.jaerosci.2007.08.001.

    Article  CAS  Google Scholar 

  37. Viswanathan K, Wu W, Taipabu MI, Chandra-Ambhorn W. Efects of antioxidant and ceramic coating on performance enhancement and emission reduction of a diesel engine fueled by Annona oil biodiesel. J Taiwan Inst Chem Eng. 2021;125:243–56. https://doi.org/10.1016/j.jtice.2021.06.041..

    Article  CAS  Google Scholar 

  38. Andana T, Piumetti M, Bensaid S, Veyre L, Thieuleux C, Russo N, et al. Nanostructured equimolar ceria-praseodymia for NOx-assisted soot oxidation: insight into Pr dominance over Pt nanoparticles and metal–support interaction. Appl Catal B. 2018;226:147–61. https://doi.org/10.1016/j.apcatb.2017.12.048.

    Article  CAS  Google Scholar 

  39. Aneggi E, de Leitenburg C, Trovarelli A. On the role of lattice/surface oxygen in ceria–zirconia catalysts for diesel soot combustion. Catal Today. 2012;181:108–15. https://doi.org/10.1016/j.cattod.2011.05.034.

    Article  CAS  Google Scholar 

  40. Lee JH, Lee SH, Choung JW, Kim CH, Lee K-Y. Ag-incorporated macroporous CeO2 catalysts for soot oxidation: effects of Ag amount on the generation of active oxygen species. Appl Catal B. 2019;246:356–66. https://doi.org/10.1016/j.apcatb.2019.01.064.

    Article  CAS  Google Scholar 

  41. Lapuerta M, Rodríguez-Fernández J, Sánchez-Valdepeñas J. Soot reactivity analysis and implications on diesel filter regeneration. Prog Energy Combust Sci. 2020;78:100833. https://doi.org/10.1016/j.pecs.2020.100833.

    Article  Google Scholar 

  42. Lee JH, Jo DY, Choung JW, Kim CH, Ham HC, Lee KY. Roles of noble metals (M = Ag, Au, Pd, Pt and Rh) on CeO2 in enhancing activity toward soot oxidation: active oxygen species and DFT calculations. J Hazard Mater. 2021;403:124085. https://doi.org/10.1016/j.jhazmat.2020.124085.

    Article  CAS  PubMed  Google Scholar 

  43. Chen LF, Arellano U, Wang JA, Balcázar LM, Sotelo R, Solis S, et al. Oxygen defect, electron transfer and photocatalytic activity of Ag/CeO2/SBA-15 hybrid catalysts. Catal Today. 2021;63:1–19. https://doi.org/10.1016/j.cattod.2021.10.014.

    Article  CAS  Google Scholar 

  44. Zhang B, Chen J, Wu G, Guo Y, Wang H. Revealing the boosting role of NO for soot combustion over CeO2(111): a frst-principles microkinetic modeling. Mol Catal. 2021;509:111582. https://doi.org/10.1016/j.mcat.2021.111582.

    Article  CAS  Google Scholar 

  45. Seo Y, Lee MW, Kim HJ, Choung JW, Jung C, Kim CH, et al. Effect of Ag do** on Pd/Ag-CeO2 catalysts for CO and C3H6 oxidation. J Hazard Mater. 2021;415:125373. https://doi.org/10.1016/j.jhazmat.2021.125373.

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Luo S, Zhang M, Liu W, Wu X, Liu S. Roles of oxygen vacancy and O in oxidation reactions over CeO2 and Ag/CeO2 nanorod model catalysts. J Catal. 2018;368:365–78. https://doi.org/10.1016/j.jcat.2018.10.018.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by (1) Science & Technology Department of Sichuan Province (2023YFG0202); (2) Foundation of Key Laboratory of Power Machinery and Engineering, Ministry of Education, P.R. China (202202); (3) Chunhui Plan of the Ministry of Education (HZKY20220569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Yi, C., Pu, P. et al. Experimental study on Ag-modified CeO2 as the catalyst for soot oxidation. J Therm Anal Calorim 148, 12311–12320 (2023). https://doi.org/10.1007/s10973-023-12504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12504-7

Keywords

Navigation